CCMVal – Chemistry-Climate Model Validation

The goal of the SPARC Chemistry-Climate Model Validation Activity (CCMVal) is to improve understanding of coupled chemistry-climate models (CCMs) and their underlying GCMs (General Circulation Models) through process-oriented evaluation, along with discussion and coordinated analysis of science results.

One outcome of this effort is expected to be improvements in how well CCMs represent physical, chemical, and dynamical processes. In addition, this effort will focus on understanding the ability of CCMs to reproduce past trends and variability and providing predictions from ensembles of long model runs. Achieving these goals will involve comparing CCM constituent distributions with (robust) relationships between constituent variables as found in observations. This effort is both a model-model and model-data comparison exercise. Key diagnostics with respect to radiation, dynamics, transport, and stratospheric chemistry and microphysics are defined in the CCMVal Evaluation Table. This approach allows modelers to decide (based on their own priorities and resources) which diagnostics to examine in any particular area. The CCMVal activity helps coordinating and organising CCM model efforts around the world. In this way, the CCM community can provide the maximum amount of useful scientific information for WMO/UNEP and IPCC assessments.

Validation of CCMs is a prerequisite for meaningful prediction, but it is only one aspect. The other aspect is to ensure that model predictions are made under the same conditions. However this is a very challenging and complex issue, because experimental choices (e.g. forcing scenarios, specification of SSTs, experimental strategy) are made by different model groups under various constraints, and it is a challenge to coordinate them.

During phase 1, CCMVal-1, 13 research groups ran CCM simulations and compared their results to process-oriented studies (Eyring et al. 2006, 2007). During the second phase, CCMVal-2, research groups considered a much larger number of CCMs and processes. The major outcome of CCMVal-2 was the SPARC Science Report No. 5 which was published just in time to feed into the 2010 WMO/UNEP Ozone Asssessment.

Activity leaders:

Veronika Eyring, DLR Oberpfaffenhofen, Germany

Darryn Waugh, John Hopkins University, Baltimore MD, USA

Andrew Gettelman, NCAR, Boulder CO, USA

Steven Pawson, NASA Goddard Space Flight Center, Greenbelt MD, USA

Ted G. Shepherd, University of Reading, Reading, UK

Published Results:

SPARC Science Report:

  • SPARC Report No. 5 (2010) Chemistry-Climate Model Validation. Eyring, V., Shepherd, T. and D. Waugh (eds.)

SPARC activity report:

Journal publications:

Find full publication list at http://www.pa.op.dlr.de/CCMVal/CCMVal_publications.html

  • Butchart, N., A.J. Chariton-Perez, I. Cionni, S.C. Hardiman, P.H. Hayenes, K. Krüger, P.J. Kushner, P.A. Newman, S.M. Osprey, J. Perlwitz, M. Sigmond, L. Wang, H. Akiyoshi, J. Austin, S. Bekki, A. Baumgaertner, P. Braesicke, C. Brühl, M. Chipperfiled, M. Dameris, S. Dhomse, V. Eyring, R. Garcia, H. Garny, P. Jöckel, J.-F. Mamarque, M. Marchand, M. Michou, O. Morgenstern, T. Nakamura, S. Pawson, D. Plummer, J. Pyle, E. Rozanov, J. Scinocca, T.G. Shepherd, K. Shibata, D. Smale, H. Teyssedre. W. Tian, D. Waugh, and Y. Yamashita (2011)Multimodel climate and variability of the stratosphere. Journal of Geophysical Research – Atmosphere 116, D05102, DOI: 10.1029/2010JD014995.
  • Austin, J., K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, G. Bodeker, C. Brühl, N. Butchart, M. Chipperfield, M. Deushi, V. I. Fomichev, M. A. Giorgetta, L. Gray, K. Kodera, F. Lott, E. Manzini, D. Marsh, K. Matthes, T. Nagashima, K. Shibata, R. S. Stolarski, H. Struthers, and W. Tian (2008) Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113, D11306
  • Eyring V., N.R.P. Harris, M. Rex, T.G. Shepherd, D.W. Fahey, G.T. Amanatidis, J. Austin, M.P. Chipperfield, M. Dameris, P.M. De F. Forster, A. Gettelman, H.F. Graf, T. Nagashima, P.A. Newman, S. Pawson, M.J. Prather, J.A. Pyle, R.J. Salawitch, B.D. Santer, and D.W. Waugh (2005) A strategy for process-oriented validation of coupled chemistry-climate models. Bull. Am. Meteorol. Soc., 86, 1117–1133
  • Eyring, V., N. Butchart, D. W. Waugh, H. Akiyoshi, J. Austin, S. Bekki, G. E. Bodeker, B. A. Boville, C. Brühl, M. P. Chipperfield, E. Cordero, M. Dameris, M. Deushi, V. E. Fioletov, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, V. Grewe, L. Jourdain, D. E. Kinnison, E. Mancini, E. Manzini, M. Marchand, D. R. Marsh, T. Nagashima, P. A. Newman, J. E. Nielsen, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, M. Schraner, T. G. Shepherd, K. Shibata, R. S. Stolarski, H. Struthers, W. Tian, and M. Yoshiki (2006) Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327
  • Eyring, V., D. W. Waugh, G. E. Bodeker, E. Cordero, H. Akiyoshi, J. Austin, S. R. Beagley, B. Boville, P. Braesicke, C. Brühl, N. Butchart, M. P. Chipperfield, M. Dameris, R. Deckert, M. Deushi, S. M. Frith, R. R. Garcia, A. Gettelman, M. Giorgetta, D. E. Kinnison, E. Mancini, E. Manzini, D. R. Marsh, S. Matthes, T. Nagashima, P. A. Newman, J. E. Nielsen, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, M. Schraner, J. F. Scinocca, K. Semeniuk, T. G. Shepherd, K. Shibata, B. Steil, R. Stolarski, W. Tian, and M. Yoshiki (2007) Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112,  D16303, doi:10.1029/2006JD008332
  • Gettelman, A., T. Birner, V. Eyring, H. Akiyoshi, S. Bekki, C. Brühl, M. Dameris, D. E. Kinnison, F. Lefevre, F. Lott, E. Mancini, G. Pitari, D. A. Plummer, E. Rozanov, K. Shibata, A. Stenke, H. Struthers, and W. Tian (2009) The Tropical Tropopause Layer 1960–2100. Atmos. Chem. Phys., 9, 1621-1637
  • Son, S.-W., L. M. Polvani, D. W. Waugh, H. Akiyoshi, R. Garcia, D. Kinnison, S. Pawson, E. Rozanov, T. G. Shepherd, and K. Shibata (2008) The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet. Science, 320, DOI: 10.1126/science.1155939
  • Son, S.-W., L. M. Polvani, D. W. Waugh, T. Birner, H. Akiyoshi, R. R. Garcia, A. Gettelman, D. A. Plummer, and E. Rozanov (2009) Future tropopause trends as simulated by stratosphere-resolving
chemistry-climate models. J. Clim., 22, 429-455
  • Tourpali, K., A. F. Bais, A. Kazantzidis, C. S. Zerefos, H. Akiyoshi, J. Austin, C. Brühl, N. Butchart, M. P. Chipperfield, M. Dameris, M. Deushi, V. Eyring, R. R. Garcia, M. A. Giorgetta, D. E. Kinnison, E. Mancini, E. Manzini, D. R. Marsh, T. Nagashima, G. Pitari, D. A. Plummer, E. Rozanov, J. F. Scinocca, K. Shibata, B. Steil, W. Tian and M. Yoshiki (2009) Clear sky UV simulations in the 21st century based on Ozone and Temperature Projections from Chemistry-Climate Models. Atmos. Chem. Phys., 9, 1165-1172
  • Waugh, D. W. and V. Eyring (2008) Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8, 5699-5713.

Website for further information:

SPARC Activity CCMVal
http://www.pa.op.dlr.de/CCMVal/