CHAPTER 3 – SUPPLEMENT 1

Evaluation of Atmospheric Loss Processes: OH Kinetics Supplement

Lead Authors:

James B. Burkholder Wahid Mellouki

Co-Authors:

Eric L. Fleming Christian George Dwayne E. Heard Charles H. Jackman Michael J. Kurylo Vladimir L. Orkin William H. Swartz Timothy J. Wallington

Rate coefficients for the reaction of the OH radical with the compounds included in the SPARC Lifetime report have received various amounts of attention. The figures included in this supplement contain (1) a summary of the available literature data for each reaction, (2) the SPARC recommendation for the OH reaction-rate coefficient (solid line) and the basis of the recommendation, and (3) the 2σ uncertainty range in the recommended reaction-rate coefficient shown as the shaded area. The original (un-normalized) experimental data are plotted in the figures unless noted otherwise. The recommended temperature dependence, E/R, was determined from fits of data normalized to the recommended k(298 K), hence, some of the plotted data used in the fits may not appear to be in agreement with the shaded area of the recommended fit.

The uncertainties quoted herein follow the format given in the NASA/JPL¹ data evaluation where the uncertainty factor f(T) corresponds to the 1σ estimated uncertainty range in the rate coefficient, k(T) at temperature T

$$f(T) = f(298 \text{ K}) \exp\left(\left|g\left(\frac{1}{T} - \frac{1}{298}\right)\right|\right)$$

with the f(298 K) factor corresponding to the 1σ estimated uncertainty range in the room-temperature rate coefficient, k(298 K), and g is a parameter used to describe the possible increase in uncertainty at temperatures other than 298 K. Therefore, the uncertainty factor corresponding to the 2σ estimated uncertainty at any temperature is calculated as the square of f(T), i.e., $f(T)^2$.

Fully halogenated compounds do not undergo measureable reaction with OH at atmospheric temperatures. Upper limits of the rate coefficients for the reactions of CFCs (CCl₃F, CCl₂F₂, CCl₂FCClF₂, CCl₂FCClF₂, CF₃CClF₂, and CCl₄) were estimated based on thermochemistry by equating the activation energy with the reaction endothermicity^{1,2} for the abstraction of a Cl atom and assuming an Arrhenius pre-exponential factor of 1×10^{-11} cm³ molecule⁻¹ s⁻¹. The corresponding estimations for the reactions of Halons (CBrClF₂, CBrF₃, CBr₂F₂, and CBrF₂CBrF₂) are based on the upper limits of the rate coefficients experimentally obtained above room temperature assuming an Arrhenius pre-exponential factor of 1×10^{-12} cm³ molecule⁻¹ s⁻¹.

- (1) Sander, S., J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin, and P. H. Wine, *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, JPL Publication 10-6*, Jet Propulsion Laboratory, California Institute of Technology, 2011.
- (2) Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and T. J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV gas phase reactions of organic halogen species, *Atmos. Chem. Phys.*, 9, 4141-4496, 2008.

3S1-2 Chapter 3: Supplement 1

Table 3.1. Reaction-rate coefficients and estimated uncertainties for the OH + compound gas-phase reactions. *

Compound	Chemical Formula	Temperature Range (K) **	A *	E/R (K)	k(298 K) *	f(298 K)	g	Footnotes
1. CFC-11	CCl ₃ F	_	10	9695	<1 (-25)	_	_	1,2
2. CFC-12	CCl_2F_2	_	10	11910	<1 (-28)	_	_	1,2
3. CFC-113	CCl ₂ FCClF ₂	_	10	>6220	<1 (-20)	_	_	3,4
4. CFC-114	CClF ₂ CClF ₂	_	10	>6220	<1 (-20)	_	_	3,4
5. CFC-115	CF ₃ CClF ₂	_	10	>6220	<1 (-20)	_	_	3,4
6. Carbon Tetrachloride	CCl_4	_	10	6220	<1 (-20)	_	_	1,2
7. Nitrous oxide	N_2O	_	_	_	< 5.0 (-17)	_	_	3,a
8. Halon - 1202	CBr_2F_2	_	I	>2200	<5 (-16)	_	_	5
9. Halon-1211	$CBrClF_2$	_	1	>3500	<8 (-18)	_	_	2,b
10. Halon-1301	CBrF ₃	_	I	>3600	<6 (-18)	_	_	5
11. Halon-2402	CBrF ₂ CBrF ₂	_	1	>3600	<6 (-18)	_	_	5
12. Methane	$\mathrm{CH_4}$	195 - 300	1.85	1690	6.4 (-15)	1.05	50	2,c
13. Methyl Chloroform	CH ₃ CCl ₃	233 - 379	1.64	1520	1.0 (-14)	1.10	50	5,6
14. Methyl Chloride	CH ₃ Cl	224 - 298	1.96	1200	3.5 (-14)	1.10	50	2,6,d
15. Methyl Bromide	CH_3Br	233 - 300	1.40	1150	3.0 (-14)	1.07	100	2,6,e
16. HCFC-22	CHClF ₂	250 - 391	1.03	1600	4.8 (-15)	1.07	100	2,6
17. HCFC - 141b	CH ₃ CCl ₂ F	250 - 400	1.25	1600	5.8 (-15)	1.07	100	5,6,f
18. HCFC - 142b	CH ₃ CClF ₂	223 - 400	1.30	1770	3.4 (-15)	1.15	50	5,6
19. HFC-23	CHF_3	252 - 298	0.52	2210	3.1 (-16)	1.15	100	5
20. HFC-32	CH_2F_2	222 - 384	1.70	1500	1.1 (-14)	1.07	100	5,6
21. HFC-125	CHF ₂ CF ₃	220 - 364	0.60	1700	2.0 (-15)	1.10	100	5,6,g
22. HFC-134a	CH ₂ FCF ₃	223 - 400	0.95	1600	4.4 (-15)	1.10	100	2,6,h
23. HFC-143a	CF ₃ CH ₃	261 - 403	1.06	2010	1.25 (-15)	1.10	100	2,i
24. HFC-152a	CH_3CHF_2	210 - 300	0.87	975	3.3 (-14)	1.05	50	5,6,j
25. HFC-227ea	CF ₃ CHFCF ₃	250 - 400	0.48	1680	1.7 (-15)	1.15	75	2,6,k
26. HFC-245fa	CHF ₂ CH ₂ CF ₃	273 - 370	0.61	1330	7.0 (-15)	1.15	100	5,6
27. Nitrogen Trifluoride	NF_3	_	10	>17500	<3 (-37)	_	_	1,3,1

Footnotes

- * Estimated values are given in italics; A is in units of 10^{-12} cm³ molecule⁻¹ s⁻¹; k(298 K) is in units of cm³ molecule⁻¹ s⁻¹ and (-xx) represents × 10^{-xx} ; $k(T) = A \exp(-E/RT)$.
- ** Temperature range of available experimental data considered in the evaluation of the reaction-rate coefficient parameters and uncertainty limits.
- The recommendation given here was obtained by setting the pre-exponential factor (A) to 1×10^{-11} cm³ molecule⁻¹ s⁻¹ and equating the activation energy (E) to the reaction endothermicity using the thermochemical parameters reported in JPL10-6 and IUPAC. The JPL10-6 recommendation was derived from experimentally determined rate-coefficient upper limits.
- 2 A and/or E/R recommendation is revised from JPL10-6.
- 3 Not evaluated in JPL10-6
- 4 The recommended kinetic parameters are taken to be equal to those for the OH + CCl₄ reaction.
- 5 A and E/R recommendation is unchanged from JPL10-6.
- 6 f(298 K) and/or g is revised from JPL10-6.
 - a Based on the study by Biermann *et al.* (1976), who measured a rate coefficient of 3.8 $\times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ at 298 K. A more conservative upper limit (4.0 $\times 10^{-16}$ cm³ molecule⁻¹ s⁻¹) was reported by Chang and Kaufman (1977b).
 - b Rate-coefficient expression was estimated using an estimated Arrhenius A-factor and the rate-coefficient upper limit reported by Burkholder *et al.* (1991) at 373 K.
 - c A and/or E/R recommendation was taken from IUPAC data evaluation.
 - d The recommended k(298 K) was obtained from an average of the data of Hsu and DeMore (1994), Orkin *et al.* (2013), and Herndon *et al.* (2001). The recommended E/R was obtained from a fit to the data of Herndon *et al.* below 298 K.
 - e The recommended *k*(298 K) was obtained from an average of the data of Hsu and DeMore (1994) (recalculated based on the JPL10-6-recommended rate coefficient for the OH + CH₃CHF₂ reference reaction), Chichinin *et al.* (1994), Mellouki *et al.* (1992), and Zhang *et al.* (1992). The recommended value for *E*/R was derived from a fit to the data of Mellouki *et al.* below 300 K.
 - f The data from Lancar et al. (1993) at T<400 K were used in the fit to obtain E/R.
 - g The recommended k(298 K) was obtained from an average of the data of Talukdar *et al.* (1991), DeMore (1993), and Young *et al.* (2009). The recommended value for E/R was taken from Talukdar *et al.*
 - h The present analysis differs from that given in JPL10-6 in that the three rate coefficients reported in DeMore (1993) were averaged in the determination of E/R.
 - i The present analysis differs from that given in JPL10-6 in that the DF-LMR results of Talukdar *et al.* (1991) were not included in the analysis for *k*(298 K), although their LP-LIF results were included.
 - j The site-specific rate coefficients were estimated by Kozlov *et al.* (2003) to be 33% reaction at the CH₃ group and 67% H atom abstraction from the CH₂F group.

- k The recommended k(298 K) was obtained from an average of the results from the absolute-rate studies of Nelson *et al.* (1993), Zellner *et al.* (1994), Zhang *et al.* (1994), and Tokuhashi *et al.* (2004) and the relative rate studies of Hsu and DeMore (1995) (recalculated based on the JPL10-6-recommended rate coefficients for the OH + CH₄ and OH + CHF₂CF₃ reference reactions) and Wallington *et al.* (2004) (recalculated based on the JPL10-6-recommended rate coefficient for the OH + C₂H₄ and OH + C₂H₂ reference reactions). The recommended value for E/R was based on a fit of the data below 400 K from Nelson *et al.* (1993), Zellner *et al.* (1994), Tokuhashi *et al.* (2004), and Hsu and DeMore (1995) after scaling to the recommended k(298 K) value.
- 1 The rate-coefficient parameters were estimated using a G3B3 quantum chemical method (Curtiss *et al.*, 2001) calculation of the reaction activation barrier, \sim 146 kJ mol⁻¹. Assuming a pre-exponential factor of 1×10^{-11} cm³ molecule⁻¹ s⁻¹ and E/R equal to the calculated activation barrier provides the basis of the recommendation.

- Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and T. J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV gas phase reactions of organic halogen species, *Atmos. Chem. Phys.*, 8, 4141-4496, 2008.
- Biermann, H. W., C. Zetzsh, and F. Stuhl, Rate constant for reaction of OH with N₂O at 298 K, *Ber. Bunsenges. Phys. Chem.*, 80, 909-911, 1976.
- Burkholder, J. B., R. R. Wilson, T. Gierczak, R. Talukdar, S. A. McKeen, J. J. Orlando, G. L. Vaghjiani, and A. R. Ravishankara, Atmospheric fate of CF₃Br, CF₂Br₂, CF₂ClBr, and CF₂BrCF₂Br, *J. Geophys. Res.*, *96*, 5025-5043, 1991.
- Chang, J. S., and F. Kaufman, Upper limits of the rate constants for the reactions of CFCl₃(F-ll), CF₂Cl₂(F-12), and N₂O with OH. Estimates of corresponding lower limits to their tropospheric lifetimes, *Geophys. Res. Lett.*, 4, 192-194, 1977.
- Chichinin, A., S. Teton, G. Le Bras, and G. Poulet, Kinetic investigation of the OH + CH₃Br reaction between 248 and 390 K, *J. Atmos. Chem.*, 18, 239-245, 1994.
- Curtiss, L. A., P. C. Redfern, K. Raghavachari, and J. A. Pople, Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree-Fock basis sets, *J. Chem. Phys.*, 114, 108-117, 2001.
- DeMore, W. B., Rate constants for the reactions of OH with HFC-134a (CF₃CH₂F) and HFC-134 (CHF₂CHF₂), *Geophys. Res. Lett.*, 20, 1359-1362, 1993.
- Herndon, S. C., T. Gierczak, R. K. Talukdar, and A. R. Ravishankara, Kinetics of the reactions of OH with several alkyl halides, *Phys. Chem. Chem. Phys.*, *3*, 4529-4535, 2001.
- Hsu, K. J., and W. B. DeMore, Rate constants for the reactions of OH with CH₃Cl, CH₂Cl₂, CHCl₃, and CH₃Br, *Geophys. Res. Lett.*, *21*, 805-808, 1994.
- Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.
- Kozlov, S. N., V. L. Orkin, and M. J. Kurylo, An Investigation of the reactivity of OH with fluoroethanes: CH₃CH₂F (HFC-161), CH₂FCH₂F (HFC-152), and CH₃CHF₂ (HFC-152a), *J. Phys. Chem. A*, 107, 2239-2246, 2003.

- Lancar, I., G. Le Bras, and G. Poulet, Oxidation of CH₃CCl₃ and CH₃CFCl₂ in the atmosphere Kinetic study of OH reactions, *J. Chim. Physique*, *90*, 1897-1908, 1993.
- Mellouki, A., R. K. Talukdar, A. -M. Schmoltner, T. Gierczak, M. J. Mills, S. Soloman, and A. R. Ravishankara, Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH₃Br) and dibromomethane (CH₂Br₂), *Geophys. Res. Lett.*, 19, 2059-2062, 1992.
- Nelson, D. D. J., M. S. Zahniser, and C. E. Kolb, OH reaction kinetics and atmospheric lifetimes of CF₃CFHCF₃ and CF₃CH₂Br, *Geophys. Res. Lett.*, 20, 197-200, 1993.
- Orkin, V. L., V. G. Khamaganov, E. E. Kasimovskaya, and A. G. Guschin, Photochemical properties of some Cl-containing halogenated alkanes, *submitted to J. Phys. Chem.*, 2013.
- Sander, S. P., J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin, and P. H. Wine, *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, JPL Publication 10-6*, Jet Propulsion Laboratory, California Institute of Technology 2011.
- Talukdar, R., A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, Atmospheric fate of CF₂H₂, CH₃CF₃, CHF₂CF₃, and CH₃CFCl₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₃CFCl₂, *J. Phys. Chem.*, 95, 5815-5821, 1991.
- Tokuhashi, K., L. Chen, S. Kutsuna, T. Uchimaru, M. Sugie, and A. Sekiya, Environmental assessment of CFC alternatives Rate constants for the reactions of OH radicals with fluorinated compounds, *J. Fluor. Chem.*, 125, 1801-1807, 2004.
- Wallington, T. J., M. D. Hurley, O. J. Nielsen, and M. P. S. Andersen, Atmospheric chemistry of CF₃CFHCF₂OCF₃ and CF₃CFHCF₂OCF₂H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials, *J. Phys. Chem. A*, *108*, 11333-11338, 2004.
- Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury, Atmospheric chemistry of CF₃CF₂H and CF₃CF₂CF₂CF₂H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids, *Chem. Phys. Lett.*, 473, 251-256, 2009.
- Zellner, R., G. Bednarek, A. Hoffmann, J. P. Kohlmann, V. Mors, and H. Saathoff, Rate and mechanism of the atomspheric degradation of 2 H-heptafluoropropane (HFC-227), *Ber. Bunsenges. Phys. Chem.*, 98, 141-146, 1994.
- Zhang, Z., S. Padmaja, R. D. Saini, R. E. Huie, and M. J. Kurylo, Reactions of hydroxyl radicals with several hydrofluorocarbons: The temperature dependencies of the rate constants for CHF₂CF₂CH₂F (HFC-245ca), CF₃CHFCHF₂ (HFC-236ea), CF₃CHFCF₃ (HFC-227ea), and CF₃CH₂CH₂CF₃ (HFC-356ffa), *J. Phys. Chem.*, *98*, 4312-4315, 1994.
- Zhang, Z., R. D. Saini, M. J. Kurylo, and R. E. Huie, A temperature dependent kinetic study of the reaction of the hydroxyl radical with CH₃Br, *Geophys. Res. Lett.*, 19, 2413-2416, 1992.

1. CFCl₃ (CFC-11)

Recommended Rate Coefficient

$$k(T) < 1 \times 10^{-11} \text{ exp}(-9695/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 1 \times 10^{-25} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations were revised from JPL10-6.1

The current recommendation was obtained by equating the activation energy (E) to the endothermicity for the abstraction of a Cl atom following IUPAC (Atkinson *et al.*, 2008) and setting the pre-exponential factor (A) to 1×10^{-11} cm³ molecule⁻¹ s⁻¹. The JPL10-6 recommendation was derived from typically less-sensitive rate-coefficient upper limits estimated from instrumental sensitivity towards reaction rate measurements.

2. CF₂Cl₂ (CFC-12)

Recommended Rate Coefficient

$$k(T) \le 1 \times 10^{-11} \exp(-11910/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) \le 1 \times 10^{-28} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations were revised from JPL10-6.1

The current recommendation was obtained by equating the activation energy (E) to the endothermicity for the abstraction of a Cl atom following IUPAC (Atkinson *et al.*, 2008) and setting the pre-exponential factor (A) to 1×10^{-11} cm³ molecule⁻¹ s⁻¹. The JPL10-6 recommendation was derived from typically less-sensitive rate-coefficient upper limits estimated from instrumental sensitivity towards reaction rate measurements.

3. CF₂ClCFCl₂ (CFC-113)

Recommended Rate Coefficient

$$k(T) = 1 \times 10^{-11} \exp(-6220/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) = 1 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Not evaluated in JPL10-6¹ or IUPAC.²

The recommended kinetic parameters are taken to be equal to those estimated for the OH + CCl₄ reaction.

4. CF₂ClCF₂Cl (CFC-114)

Recommended Rate Coefficient

$$k(T) < 1 \times 10^{-11} \text{ exp(-6220/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 1 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Not evaluated in JPL10-6¹ or IUPAC.²

The recommended kinetic parameters are taken to be equal to those estimated for the OH + CCl₄ reaction.

5. CF₃CF₂Cl (CFC-115)

Recommended Rate Coefficient

$$k(T) = 1 \times 10^{-11} \text{ exp(-6220/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) = 1 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Not evaluated in JPL10-6¹ or IUPAC².

The recommended kinetic parameters are taken to be equal to those estimated for the OH + CCl₄ reaction.

6. CCl₄ (Carbon Tetrachloride)

Recommended Rate Coefficient

$$k(T) \le 1 \times 10^{-11} \exp(-6220/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) \le 1 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations were revised from JPL10-6.

The current recommendation was obtained by equating the activation energy (E) to the endothermicity for the abstraction of a Cl atom following IUPAC and setting the pre-exponential factor (A) to 1×10^{-11} cm³ molecule⁻¹ s⁻¹. The JPL10-6 recommendation was derived from typically less-sensitive rate-coefficient upper limits estimated from instrumental sensitivity towards reaction-rate measurements.

7. N_2O

Recommended Rate Coefficient

 $k(298 \text{ K}) < 5 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Not evaluated in JPL10-6.1

The current recommendation is based on the study by Biermann *et al.* (1976), who measured a rate constant of 3.8×10^{-17} cm³ molecule⁻¹ s⁻¹ at 298 K. A more conservative upper limit $(4.0 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ was reported by Chang and Kaufman (1977).

References

Biermann, H. W., C. Zetzsh, and F. Stuhl, Rate constant for reaction of OH with N₂O at 298 K, *Ber. Bunsenges. Phys. Chem.*, 80, 909-911, 1976.

Chang, J. S., and F. Kaufman, Upper limits of the rate constants for the reactions of CFCl₃(F-ll), CF₂Cl₂(F-12), and N₂O with OH. Estimates of corresponding lower limits to their tropospheric lifetimes, *Geophys. Res. Lett.*, 4, 192-194, 1977.

8. CF₂Br₂ (Halon-1202)

Recommended Rate Coefficient

 $k(T) < 1 \times 10^{-12} \text{ exp(-2200/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(298 \text{ K}) < 5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations are unchanged from JPL10-6.¹

The rate coefficient was estimated using an estimated Arrhenius A-factor and the rate-coefficient upper limit reported by Burkholder et al. (1991) at 298 K.

Reference

Burkholder, J. B., R. R. Wilson, T. Gierczak, R. Talukdar, S. A. McKeen, J. J. Orlando, G. L. Vaghjiani, and A. R. Ravishankara, Atmospheric fate of CF₃Br, CF₂Br₂, CF₂ClBr, and CF₂BrCF₂Br, *J. Geophys. Res.*, *96*, 5025-5043, 1991.

9. CF₂ClBr (Halon-1211)

Recommended Rate Coefficient

$$k(T) < 1 \times 10^{-12} \exp(-3500/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 8 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations were revised from JPL10-6.1

The rate coefficient was estimated using an estimated Arrhenius A-factor and the rate-coefficient upper limit reported by Burkholder et al. (1991) at 373 K.

Reference

Burkholder, J. B., R. R. Wilson, T. Gierczak, R. Talukdar, S. A. McKeen, J. J. Orlando, G. L. Vaghjiani, and A. R. Ravishankara, Atmospheric fate of CF₃Br, CF₂Br₂, CF₂ClBr, and CF₂BrCF₂Br, *J. Geophys. Res.*, *96*, 5025-5043, 1991.

10. CF₃Br (Halon-1301)

Recommended Rate Coefficient

$$k(T) < 1 \times 10^{-12} \text{ exp(-3600/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 6 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations are unchanged from JPL10-6.1

The rate coefficient was estimated using an estimated Arrhenius A-factor and the rate-coefficient upper limit reported by Orkin and Khamaganov (1993) at 460 K.

Reference

Orkin, V. L., and V. G. Khamaganov, Rate constants for reactions of OH radicals with some Br-containing haloalkanes, *J. Atmos. Chem.*, *16*, 169-178, 1993.

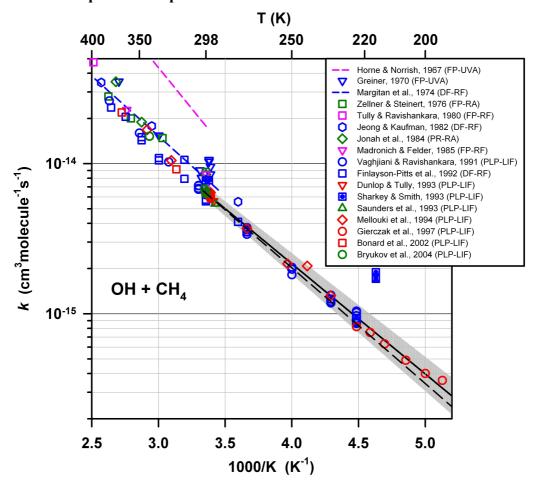
11. CF₂BrCF₂Br (Halon-2402)

Recommended Rate Coefficient

$$k(T) \le 1 \times 10^{-12} \exp(-3600/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

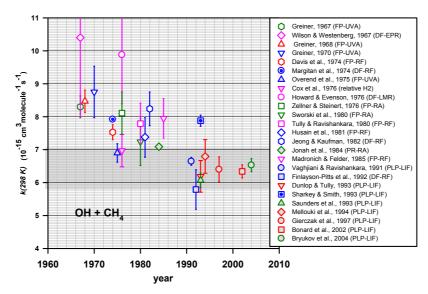
 $k(298 \text{ K}) \le 6 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Recommendations are unchanged from JPL10-6.¹


The rate coefficient was estimated using an estimated Arrhenius A-factor and the rate-coefficient upper limit reported by Orkin and Khamaganov (1993) at 460 K.

Reference

Orkin, V. L., and V. G. Khamaganov, Rate constants for reactions of OH radicals with some Br-containing haloalkanes, *J. Atmos. Chem.*, *16*, 169-178, 1993.


12. CH₄ (Methane)

Results of the temperature-dependence studies

The SPARC recommendation (solid line) over the temperature range 200 to 300 K was taken from the IUPAC data evaluation. The JPL10-6 recommendation (black dashed line) is lower by 15% at $200~\mathrm{K}$, 3% at $272~\mathrm{K}$, and 0.4% at $298~\mathrm{K}$ is included for comparison.

History of k(298 K) measurements

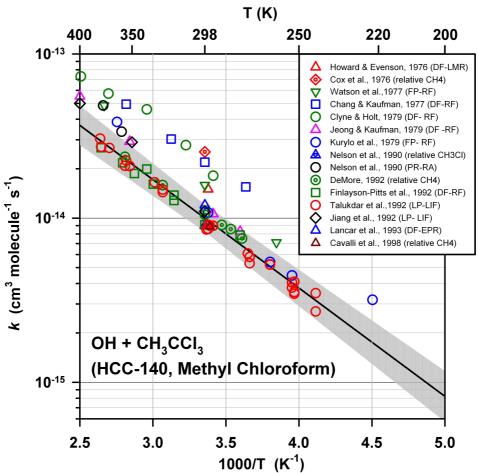
The k(298 K) values are from the Arrhenius fits obtained from the studies of temperature dependences. The results obtained only at room temperature, near 298 K, were corrected slightly to obtain k(298 K) using the recommended E/R. The more recent studies are believed to be free from the influence of secondary reactions involving OH.

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 1.85 \times 10^{-12} \text{ exp}(-1690/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.05$
 $k(298 \text{ K}) = 6.4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 50$

A and E/R recommendations are unchanged from IUPAC.


f(298 K) and g were revised.

- Bonard, A., V. Daele, J.-L. Delfau, and C. Vovelle, Kinetics of OH radical reactions with methane in the temperature range 295-660 K and with dimethyl ether and methyl-tert-butyl ether in the temperature range 295-618 K, *J. Phys. Chem. A*, 106, 4348-4389, 2002.
- Bryukov, M. G., V. D. Knyazev, S. M. Lomnicki, C. A. McFerrin, and B. Dellinger, Temperature-dependent kinetics of the gas-phase reactions of OH with Cl₂, CH₄, and C₃H₈, *J. Phys. Chem. A*, 108, 10464-10472, 2004.
- Cox, R. A., R. G. Derwent, and P. M. Holt, Relative rate constants for the reactions of OH radicals with H₂, CH₄, CO, NO and HONO at atmospheric pressure and 296 K, *J. Chem. Soc. Faraday Trans.* 1, 72, 2031-2043, 1976.
- Davis, D. D., S. Fischer, and R. Schiff, Flash photolysis-resonance fluorescence kinetics study: Temperature dependence of the reactions OH + CO \rightarrow CO₂ + H and OH + CH₄ \rightarrow H₂O + CH₃, *J. Chem. Phys.*, *61*, 2213-2219, 1974.
- Dunlop, J. R., and F. P. Tully, A kinetics study of OH radical reactions with methane and perdeuterated methane, *J. Phys. Chem.*, *97*, 11148-11150, 1993.

- Finlayson-Pitts, B. J., M. J. Ezell, T. M. Jayaweera, H. N. Berko, and C. C. Lai, Kinetics of the reactions of OH with methyl chloroform and methane: Implications for global tropospheric OH and the methane budget, *Geophys. Res. Lett.*, 19, 1371-1374, 1992.
- Gierczak, T., S. Talukdar, S. Herndon, G. L. Vaghjiani, and A. R. Ravishankara, Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes, *J. Phys. Chem. A*, 101, 3125-3134, 1997.
- Greiner, N. R., Hydroxyl-radical kinetics by kinetic spectroscopy. I. Reactions with H₂, CO, and CH₄ at 300°K, *J. Chem. Phys.*, 46, 2795-2799, 1967.
- Greiner, N. R., Hydroxyl radical kinetics by kinetic spectroscopy. IV. Some deuterium isotope effects, *J. Chem. Phys.*, 48, 1413, 1968.
- Greiner, N. R., Hydroxyl radical kinetics by kinetic spectroscopy. VI reactions with alkanes in the range 300 500 K, *J. Chem. Phys.*, *53*, 1070-1076, 1970.
- Horne, D. G., and R. G. W. Norrish, Rate of H-abstraction by OH from hydrocarbons, *Nature*, *215*, 1373-1374, 1967.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH₄ and fluorine, chlorine, and bromine substituted methanes at 296 K, *J. Chem. Phys.*, 64, 197-202, 1976.
- Husain, D., J. M. C. Plane, and N. K. H. Slater, Kinetic investigation of the reactions of $OH(X^2 \prod)$ with the hydrogen halides, HCl, DCl, HBr and DBr by time-resolved resonance fluorescence $(A^2 \sum^+ X^2 \prod)$, *J. Chem. Soc. Faraday Trans.* 2, 77, 1949-1962, 1981.
- Jeong, K.-M., and F. Kaufman, Kinetics of the reaction of hydroxyl radical with methane and with nine Cl- and F-substituted methanes. I. Experimental results, comparisons, and applications, *J. Phys. Chem.*, 86, 1808-1815, 1982.
- Jonah, C. D., W. A. Mulac, and P. Zeglinski, Rate constants for the reaction of OH + CO, OD + CO, and OH + methane as a function of temperature, *J. Phys. Chem.*, 88, 4100-4104, 1984.
- Madronich, S., and W. Felder, Symp. Int. Combust. Proc., 20, 703-713, 1985.
- Margitan, J. J., F. Kaufman, and J. G. Anderson, The reaction of OH with CH₄, *Geophys. Res. Lett.*, 1, 80-81, 1974.
- Mellouki, A., S. Teton, G. Laverdet, A. Quilgars, and G. Le Bras, Kinetic studies of OH reactions with H₂O₂, C₃H₈, and CH₄ using the pulsed laser photolysis-laser induced fluorescence method., *J. Chim. Phys.*, *91*, 473-487, 1994.
- Overend, R. P., G. Paraskevopoulos, and R. J. Cvetanović, Rates of OH radical reactions. I. Reactions with H₂, CH₄, C₂H₆, and C₃H₈ at 295 K, *Canad. J. Chem.*, *53*, 3374-3382, 1975.
- Saunders, S. M., K. J. Hughes, M. J. Pilling, D. L. Baulch, and P. I. Smurthwaite, Reactions of hydroxyl radicals with selected hydrocarbons of importance in atmospheric chemistry, *Proc. SPIE Int. Soc. Opt. Eng.*, *1715*, 88-99, 1993.
- Sharkey, P., and I. W. M. Smith, Kinetics of elementary reactions at low temperature: Rate constants for the reactions of OH with HCl (298 \geq T/K \geq 138), CH₄ (298 \geq T/K \geq 178), and C₂H₆ (298 \geq T/K \geq 138), *J. Chem. Soc. Faraday Trans.*, 89, 631-638, 1993.

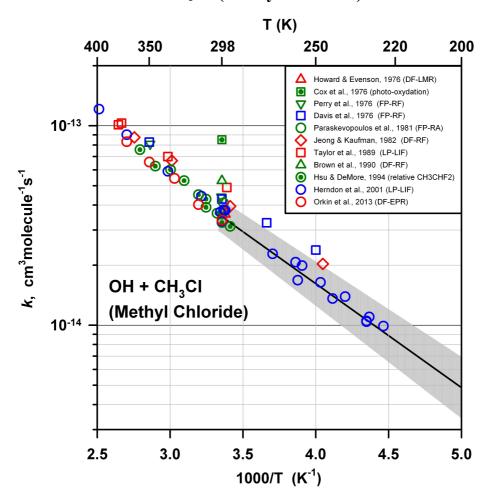
- Sworski, T. J., C. J. Hochanadel, and P. J. Ogren, Flash photolysis of H₂O vapor in CH₄. H and OH yields and rate constants for CH₃ reactions with H and OH, *J. Phys. Chem.*, 84, 129-134, 1980.
- Tully, F. P., and A. R. Ravishankara, Flash photolysis-resonance fluorescence kinetic study of the reactions OH + $H_2 \rightarrow H_2O + H$ and OH + $CH_4 \rightarrow H_2O + CH_3$ from 298 to 1020 K, *J. Phys. Chem.*, 84, 3126-3130, 1980.
- Vaghjiani, G. L., and A. R. Ravishankara, New measurement of the rate coefficient for the reaction of OH with methane, *Nature*, *350*, 406-409, 1991.
- Wilson, W. E., and A. A. Westenberg, Study of the reaction of hydroxyl radical with methane by quantitative ESR, *Symp. Int. Combust. Proc.*, 11, 1143-1150, 1967.
- Zellner, R., and W. Steinert, A flash photolysis study of the rate of the reaction OH + CH₄ \rightarrow CH₃ + H₂O over an extended temperature range, *Int. J. Chem. Kinet.*, 8, 397-409, 1976.

13. CH₃CCl₃ (Methyl Chloroform)

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 1.64 \times 10^{-12} \exp(-1520/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.1$
 $k(298 \text{ K}) = 1.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 50$


A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g were revised from JPL10-6.

- Cavalli, F., M. Glasius, J. Hjorth, B. Rindone, and N. R. Jensen, Atmospheric lifetimes, infrared spectra and degradation products of a series of hydrofluoroethers, *Atmos. Environ.*, 32, 3767-3773, 1998.
- Chang, J. S., and F. Kaufman, Kinetics of the reactions of hydroxyl radicals with some halocarbons: CHFCl₂, CHF₂Cl, CH₃CCl₃, C₂HCl₃, and C₂Cl₄, *J. Chem. Phys.*, 66, 4989-4994, 1977.
- Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.* 2, 75, 582-591, 1979.
- Cox, R. A., R. G. Derwent, A. E. J. Eggleton, and J. E. Lovelock, Photochemical oxidation of halocarbons in the troposphere, *Atmos. Environ.*, 10, 305-308, 1976.

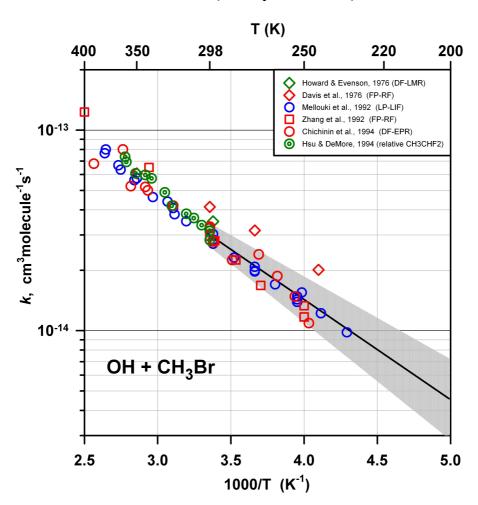
- DeMore, W. B., Relative rate constants for the reactions of OH with methane and methyl chloroform, *Geophys. Res. Lett.*, 19, 1367-1370, 1992.
- Finlayson-Pitts, B. J., M. J. Ezell, T. M. Jayaweera, H. N. Berko, and C. C. Lai, Kinetics of the reactions of OH with methyl chloroform and methane: Implications for global tropospheric OH and the methane budget, *Geophys. Res. Lett.*, 19, 1371-1374, 1992.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K, *J. Chem. Phys.*, 64, 4303-4306, 1976.
- Jeong, K. M., and F. Kaufman, Rates of the reactions of 1, 1, 1-trichloroethane (methyl chloroform) and 1, 1, 2-trichloroethane with OH, *Geophys. Res. Lett.*, 6, 757-759, 1979.
- Jiang, Z., P. H. Taylor, and B. Dellinger, Laser photolysis/laser-induced fluorescence studies of the reaction of OH with 1,1,1-trichloroethane over an extended temperature range, *J. Phys. Chem.*, *96*, 8961-8964, 1992.
- Kurylo, M. J., P. C. Anderson, and O. Klais, A flash photolysis resonance fluorescence investigation of the reaction $OH + CH_3CCl_3 \rightarrow H_2O + CH_2CCl_3$, *Geophys. Res. Lett.*, 6, 760-762, 1979.
- Lancar, I., G. Le Bras, and G. Poulet, Oxidation of CH₃CCl₃ and CH₃CFCl₂ in the atmosphere Kinetic study of OH reactions, *J. Chim. Phys.*, *90*, 1897-1908, 1993.
- Nelson, L., I. Shanahan, H. W. Sidebottom, J. Treacy, and O. J. Nielsen, Kinetics and mechanism for the oxidation of 1,1,1-trichloroethane, *Int. J. Chem. Kinet.*, 22, 577-590, 1990.
- Talukdar, R. K., A. Mellouki, A.-M. Schmoltner, T. Watson, S. Montzka, and A. R. Ravishankara, Kinetics of the OH reaction with methyl chloroform and its atmospheric implications, *Science*, 257, 227-230, 1992.
- Watson, R. T., G. Machado, B. Conaway, S. Wagner, and D. D. Davis, A temperature dependent kietics study of the reaction of OH with CH₂ClF, CHCl₂F, CHClF₂, CH₃CCl₃, CH₃CF₂Cl, and CF₂ClCFCl₂, *J. Phys. Chem.*, 81, 256-262, 1977.

14. CH₃Cl (Methyl Chloride)

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 1.96 \times 10^{-12} \text{ exp}(-1200/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.1$
 $k(298 \text{ K}) = 3.5 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 50$


k(298 K) is an average of room temperature data of Hsu and DeMore, Orkin et al. (1994), and Herndon et al. (2001)

E/R from Herndon *et al.* (2001), below room temperature *f*(298 K) and g were revised from JPL10-6.¹

- Brown, A. C., C. E. Canosa-Mas, and R. P. Wayne, A kinetic study of the reactions of OH with CH₃I and CF₃I, *Atmos. Environ.*, 24A, 361-367, 1990.
- Cox, R. A., R. G. Derwent, A. E. J. Eggleton, and J. E. Lovelock, Photochemical oxidation of halocarbons in the troposphere, *Atmos. Environ.*, 10, 305-308, 1976.
- Davis, D. D., G. Machado, B. Conaway, Y. Oh, and R. T. Watson, A temperature dependent kinetics study of the reaction of OH with CH₃Cl, CH₂Cl₂, CHCl₃, and CH₃Br, *J. Chem. Phys.*, 65, 1268-1274, 1976.
- Herndon, S. C., T. Gierczak, R. K. Talukdar, and A. R. Ravishankara, Kinetics of the reactions of OH with several alkyl halides, *Phys. Chem. Chem. Phys.*, *3*, 4529-4535, 2001.

- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH₄ and fluorine, chlorine, and bromine substituted methanes at 296 K, *J. Chem. Phys.*, 64, 197-202, 1976.
- Hsu, K. J., and W. B. DeMore, Rate constants for the reactions of OH with CH₃Cl, CH₂Cl₂, CHCl₃, and CH₃Br, *Geophys. Res. Lett.*, 21, 805-808, 1994.
- Jeong, K.-M., and F. Kaufman, Kinetics of the reaction of hydroxyl radical with methane and with nine Cl- and F-substituted methanes. I. Experimental results, comparisons, and applications, *J. Phys. Chem.*, 86, 1808-1815, 1982.
- Orkin, V. L., V. G. Khamaganov, E. E. Kasimovskaya, and A. G. Guschin, Photochemical properties of some Cl-containing halogenated alkanes, *submitted to J. Phys. Chem.*, 2013.
- Paraskevopoulos, G., D. L. Singleton, and R. S. Irwin, Rates of OH radical reactions. 8. Reactions with CH₂FCl, CHF₂Cl, CHFCl₂, CH₃CF₂Cl, CH₃Cl, and C₂H₅Cl at 297 K, *J. Phys. Chem.*, 85, 561-564, 1981.
- Perry, R. A., R. Atkinson, and J. N. Pitts, Jr., Rate constants for the reaction of OH radicals with CHFCl₂ and CH₃Cl over the temperature range 298-423 °K, and with CH₂Cl₂ at 298 °K, *J. Chem. Phys.*, 64, 1618-1620, 1976.
- Taylor, P. H., J. A. D'Angelo, M. C. Martin, J. H. Kasner, and B. Dellinger, Laser photolysis/laser-induced fluorescence studies of reaction rates of OH with CH₃Cl, CH₂Cl₂, and CHCl₃ over an extended temperature range, *Int. J. Chem. Kinet.*, *21*, 829-846, 1989.

15. CH₃Br (Methyl Bromide)

Recommended Rate Coefficient:

 $k(T) = 1.4 \times 10^{-12} \text{ exp}(-1150/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(298 \text{ K}) = 3.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ **Recommended Uncertainty Factors**

f(298 K) = 1.07g = 100

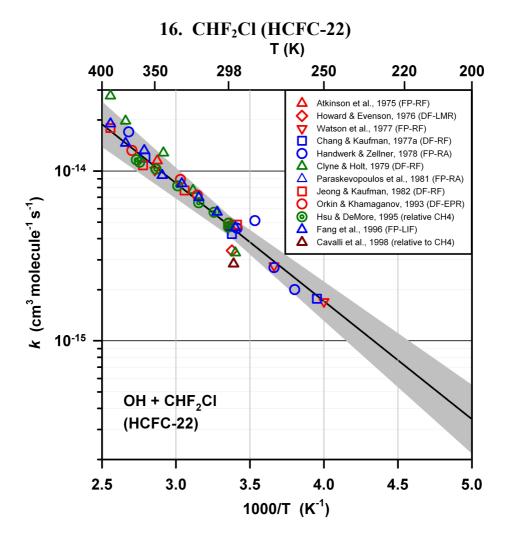
k(298 K) is an average of room temperature data of Mellouki *et al.* (1992), Zhang *et al.* (1992), Chichinin *et al.* (1994), and Hsu and DeMore (1994)

E/R from fit to Mellouki et al. (1992) below 300 K

f(298 K) was revised from JPL10-6;¹

g is unchanged from JPL10-6.1

References


Chichinin, A., S. Teton, G. Le Bras, and G. Poulet, Kinetic investigation of the OH + CH₃Br reaction between 248 and 390 K, *J. Atmos. Chem.*, 18, 239-245, 1994.

Davis, D. D., G. Machado, B. Conaway, Y. Oh, and R. T. Watson, A temperature dependent kinetics study of the reaction of OH with CH₃Cl, CH₂Cl₂, CHCl₃, and CH₃Br, *J. Chem. Phys.*, 65, 1268-1274, 1976.

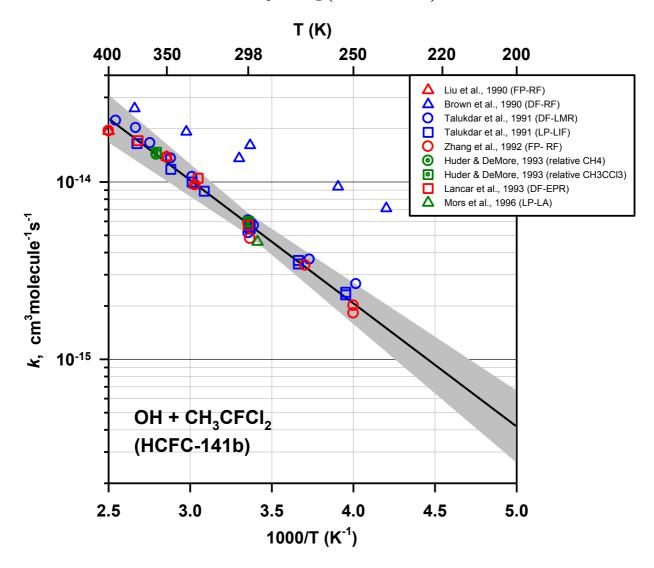
Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH₄ and fluorine, chlorine, and bromine substituted methanes at 296 K, *J. Chem. Phys.*, 64, 197-202, 1976.

Hsu, K. J., and W. B. DeMore, Rate constants for the reactions of OH with CH₃Cl, CH₂Cl₂, CHCl₃, and CH₃Br, *Geophys. Res. Lett.*, 21, 805-808, 1994.

- Mellouki, A., R. K. Talukdar, A. -M. Schmoltner, T. Gierczak, M. J. Mills, S. Soloman, and A. R. Ravishankara, Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH₃Br) and dibromomethane (CH₂Br₂), *Geophys. Res. Lett.*, 19, 2059-2062, 1992.
- Zhang, Z., R. D. Saini, M. J. Kurylo, and R. E. Huie, A temperature dependent kinetic study of the reaction of the hydroxyl radical with CH₃Br, *Geophys. Res. Lett.*, 19, 2413-2416, 1992.

Recommended Rate Coefficient

Recommended Uncertainty Factors


$$k(T) = 1.03 \times 10^{-12} \text{ exp}(-1600/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.07$
 $k(298 \text{ K}) = 4.8 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 100$

A recommendation changed and E/R recommendations are unchanged from JPL10-6. f(298 K) and g were revised from JPL10-6.

- Atkinson, R., D. A. Hansen, and J. N. Pitts, Jr., Rate constants for the reaction of OH radicals with CHF₂Cl, CF₂Cl₂, CFCl₃, and H₂ over the temperature range 297-434 K, *J. Chem. Phy.*, 63, 1703-1706, 1975.
- Cavalli, F., M. Glasius, J. Hjorth, B. Rindone, and N. R. Jensen, Atmospheric lifetimes, infrared spectra and degradation products of a series of hydrofluoroethers, *Atmos. Environ.*, *32*, 3767-3773, 1998.
- Chang, J. S., and F. Kaufman, Kinetics of the reactions of hydroxyl radicals with some halocarbons: CHFCl₂, CHF₂Cl, CH₃CCl₃, C₂HCl₃, and C₂Cl₄, *J. Chem. Phys.*, 66, 4989-4994, 1977a.
- Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans. 2*, 75, 582-591, 1979.

- Fang, T. D., P. H. Taylor, and B. Dellinger, Absolute rate measurements of the reaction of OH radicals with HCFC-21 (CHFCl₂) and HCFC-22 (CHF₂Cl) over an extended temperature range, *J. Phys. Chem.*, 100, 4048-4054, 1996.
- Handwerk, V., and R. Zellner, Kinetics of the reactions of OH radicals with some halocarbons (CHClF₂, CH₂ClF, CH₂ClCF₃, CH₃CClF₂, CH₃CHF₂) in the temperature range 260-370 K, *Ber. Bunsenges. Phys. Chem.*, 82, 1161-1166, 1978.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH₄ and fluorine, chlorine, and bromine substituted methanes at 296 K, *J. Chem. Phys.*, 64, 197-202, 1976.
- Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.
- Jeong, K.-M., and F. Kaufman, Kinetics of the reaction of hydroxyl radical with methane and with nine Cl- and F-substituted methanes. I. Experimental results, comparisons, and applications, *J. Phys. Chem.*, 86, 1808-1815, 1982.
- Orkin, V. L., and V. G. Khamaganov, Determination of rate constants for reactions of some hydrohaloalkanes with OH radicals and their atmospheric lifetimes, *J. Atmos. Chem.*, *16*, 157-167, doi: 10.1007/BF00702785, 1993.
- Paraskevopoulos, G., D. L. Singleton, and R. S. Irwin, Rates of OH radical reactions. 8. Reactions with CH₂FCl, CHF₂Cl, CHFCl₂, CH₃CF₂Cl, CH₃Cl, and C₂H₅Cl at 297 K, *J. Phys. Chem.*, 85, 561-564, 1981.
- Watson, R. T., G. Machado, B. Conaway, S. Wagner, and D. D. Davis, A temperature dependent kinetics study of the reaction of OH with CH₂ClF, CHCl₂F, CHClF₂, CH₃CCl₃, CH₃CF₂Cl, and CF₂ClCFCl₂, *J. Phys. Chem.*, 81, 256-262, 1977.

17. CH₃CFCl₂ (HCFC-141b)

Recommended Rate Coefficient

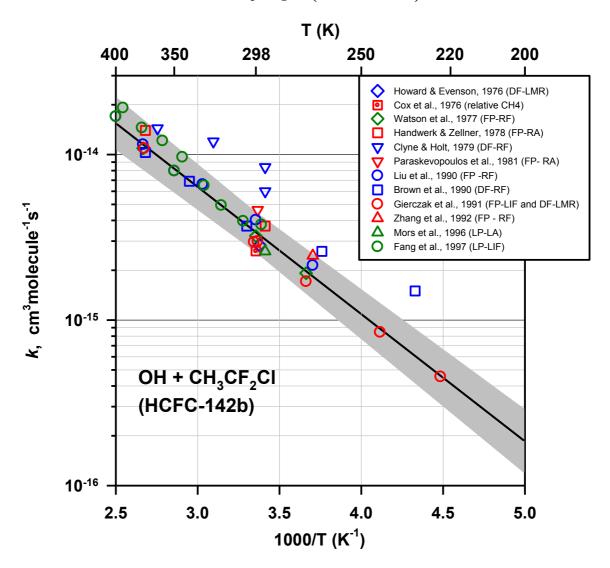
Recommended Uncertainty Factors

$$k(T) = 1.25 \times 10^{-12} \exp(-1600/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.07$
 $k(298 \text{ K}) = 5.8 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 100$

A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g were revised from JPL10-6.

References


Brown, A. C., C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Laboratory studies of some halogenated ethanes and ethers: Measurements of rates of reaction with OH and of infrared absorption cross-sections, *Atmos. Environ.*, 24A, 2499-2511, 1990.

Huder, K. J., and W. B. DeMore, Rate constant for the reaction of OH with CH₃CCl₂F (HCFC-141b) determined by relative rate measurements with CH₄ and CH₃CCl₃, *Geophys. Res. Lett.*, 20, 1575-1577, 1993.

Lancar, I., G. Le Bras, and G. Poulet, Oxidation of CH₃CCl₃ and CH₃CFCl₂ in the atmosphere - Kinetic study of OH reactions, *J. Chim. Phys.*, *90*, 1897-1908, 1993.

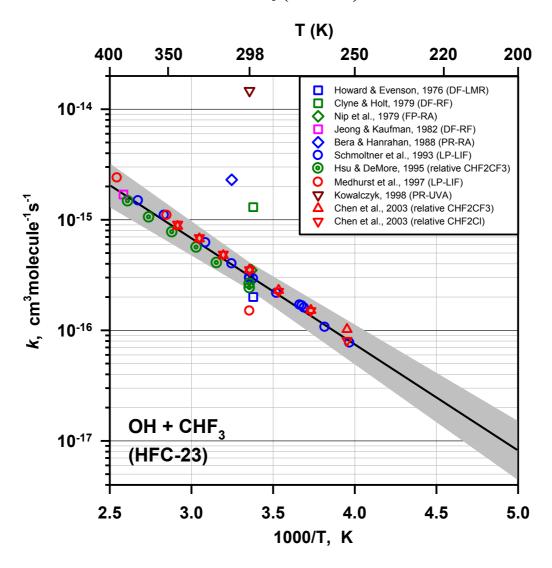
- Liu, R., R. E. Huie, and M. J. Kurylo, Rate constants for the reactions of the OH radical with some hydrochlorofluorocarbons over the temperature range 270-400 K, *J. Phys. Chem.*, *94*, 3247-3249, 1990.
- Mors, V., A. Hoffman, W. Malms, and R. Zellner, Time resolved studies of intermediate products in the oxidation of HCFC 141b (CFCl₂CH₃) and HCFC 142b (CF₂ClCH₃), *Ber. Bunsenges, Phys. Chem.*, 100, 540-552, 1996.
- Talukdar, R., A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, Atmospheric fate of CF₂H₂, CH₃CF₃, CHF₂CF₃, and CH₃CFCl₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₃CFCl₂, *J. Phys. Chem.*, *95*, 5815-5821, 1991.
- Zhang, Z., R. E. Huie, and M. J. Kurylo, Rate constants for the reactions of OH with CH₃CFCl₂ (HCFC-141b), CH₃CF₂Cl (HCFC-142b), and CH₂FCF₃ (HFC-134a), *J. Phys. Chem.*, *96*, 1533-1535, 1992.

18. CH₃CF₂Cl (HCFC-142b)

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 1.30 \times 10^{-12} \exp(-1770/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.15$
 $k(298 \text{ K}) = 3.4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 50$


A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g were revised from JPL10-6.

- Brown, A. C., C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Laboratory studies of some halogenated ethanes and ethers: Measurements of rates of reaction with OH and of infrared absorption cross-sections, *Atmos. Environ.*, 24A, 2499-2511, 1990.
- Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.
- Cox, R. A., R. G. Derwent, A. E. J. Eggleton, and J. E. Lovelock, Photochemical oxidation of halocarbons in the troposphere, *Atmos. Environ.*, 10, 305-308, 1976.

- Fang, T. D., P. H. Taylor, B. Dellinger, C. J. Ehlers, and R. J. Berry, Kinetics of the OH + CH₃CF₂Cl reaction over an extended temperature range, *J. Phys. Chem. A*, *101*, 5758-5764, 1997.
- Gierczak, T., R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy, and A. R. Ravishankara, Atmospheric fate of hydrofluoroethanes and hydrofluoroethanes: 1. Rate coefficients for reactions with OH, *J. Geophys. Res.*, *96*, 5001-5011, 1991.
- Handwerk, V., and R. Zellner, Kinetics of the reactions of OH radicals with some halocarbons (CHClF₂, CH₂ClF, CH₂ClCF₃, CH₃CClF₂, CH₃CHF₂) in the temperature range 260-370 K, *Ber. Bunsenges. Phys. Chem.*, 82, 1161-1166, 1978.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K, *J. Chem. Phys.*, 64, 4303-4306, 1976.
- Liu, R., R. E. Huie, and M. J. Kurylo, Rate constants for the reactions of the OH radical with some hydrochlorofluorocarbons over the temperature range 270-400 K, *J. Phys. Chem.*, *94*, 3247-3249, 1990.
- Mors, V., A. Hoffman, W. Malms, and R. Zellner, Time resolved studies of intermediate products in the oxidation of HCFC 141b (CFCl₂CH₃) and HCFC 142b (CF₂ClCH₃), *Ber. Bunsenges, Phys. Chem.*, 100, 540-552, 1996.
- Paraskevopoulos, G., D. L. Singleton, and R. S. Irwin, Rates of OH radical reactions. 8. Reactions with CH₂FCl, CHF₂Cl, CHFCl₂, CH₃CF₂Cl, CH₃Cl, and C₂H₅Cl at 297 K, *J. Phys. Chem.*, 85, 561-564, 1981.
- Watson, R. T., G. Machado, B. Conaway, S. Wagner, and D. D. Davis, A temperature dependent kinetics study of the reaction of OH with CH₂ClF, CHCl₂F, CHClF₂, CH₃CCl₃, CH₃CF₂Cl, and CF₂ClCFCl₂, *J. Phys. Chem.*, 81, 256-262, 1977.
- Zhang, Z., R. E. Huie, and M. J. Kurylo, Rate constants for the reactions of OH with CH₃CFCl₂ (HCFC-141b), CH₃CF₂Cl (HCFC-142b), and CH₂FCF₃ (HFC-134a), *J. Phys. Chem.*, *96*, 1533-1535, 1992.

19. CHF₃ (HFC-23)

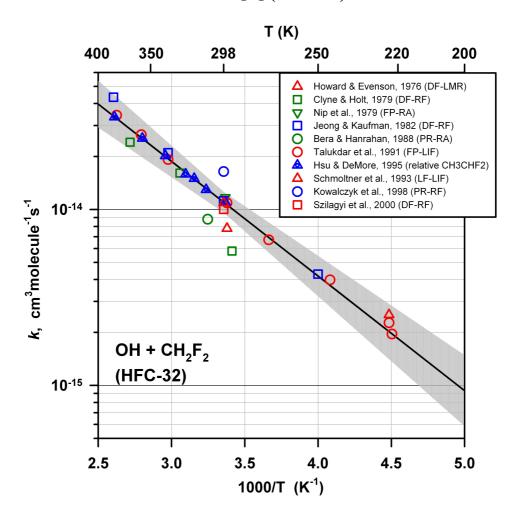
Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 0.52 \times 10^{-12} \text{ exp(-2210/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) = 3.1 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

f(298 K) = 1.15g = 100


A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g are unchanged from JPL10-6.

- Bera, R. K., and R. J. Hanrahan, Investigation of gas-phase reactions of OH radicals with fluoromethane and difluoromethane using Ar-sensitized pulse-radiolysis, *Rad. Phys. Chem.*, 32, 579-584, 1988.
- Chen, L., S. Kutsuna, K. Tokuhashi, and A. Sekiya, New technique for generating high concentrations of gaseous OH radicals in relative rate measurements, *Int J. Chem. Kinet.*, *35*, 317-325, 2003.
- Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.

- Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH₄ and fluorine, chlorine, and bromine substituted methanes at 296 K, *J. Chem. Phys.*, 64, 197-202, 1976.
- Jeong, K.-M., and F. Kaufman, Kinetics of the reaction of hydroxyl radical with methane and with nine Cl- and F-substituted methanes. I. Experimental results, comparisons, and applications, *J. Phys. Chem.*, 86, 1808-1815, 1982.
- Kowalczyk, J., A. Jowko, and M. Symanowicz, Kinetics of radical reactions in freons, *J. Radioanal. Nucl. Chem.*, 232, 75-78, 1998.
- Medhurst, L. J., J. Fleming, and H. H. Nelson, Reaction rate constants of OH + CHF₃ \rightarrow products and O(3 P) + CHF₃ \rightarrow OH + CF₃ at 500-750 K, *Chem. Phys. Lett.*, 266, 607-611, 1977.
- Nip, W. S., D. L. Singleton, R. Overend, and G. Paraskevopoulos, Rates of OH radical reactions. 5. Reactions with CH₃F, CH₂F₂, CHF₃, CH₃CH₂F, and CH₃CHF₂ at 297 K, *J. Phys. Chem.*, 83, 2440-2443, 1979.
- Schmoltner, A.-M., R. K. Talukdar, R. F. Warren, A. Mellouki, L. Goldfarb, T. Gierczak, S. A. McKeen, and A. R. Ravishankara, Rate coefficients for reactions of several hydrofluorocarbons with OH and O(¹D) their atmospheric lifetimes, *J. Phys. Chem.*, *97*, 8976-8982, 1993.

20. CH_2F_2 (HFC-32)

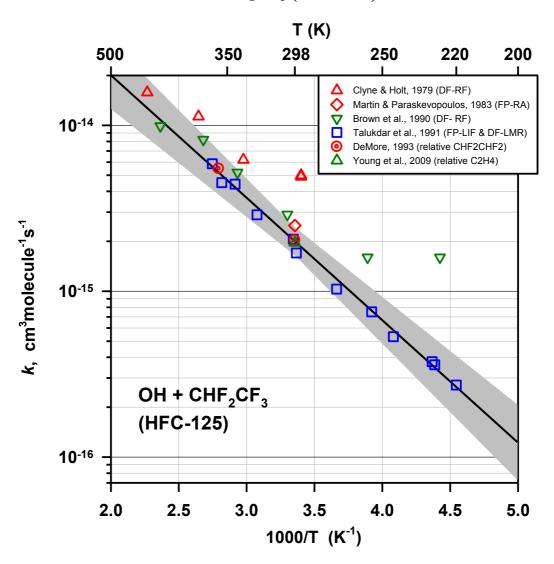
Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 1.7 \times 10^{-12} \exp(-1500/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) = 1.1 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

f(298 K) = 1.07g = 100


A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g were revised from JPL10-6.1

- Bera, R. K., and R. J. Hanrahan, Investigation of gas-phase reactions of OH radicals with fluoromethane and difluoromethane using Ar-sensitized pulse-radiolysis, *Rad. Phys. Chem.*, 32, 579-584, 1988.
- Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH₄ and fluorine, chlorine, and bromine substituted methanes at 296 K, *J. Chem. Phys.*, 64, 197-202, 1976.

- Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.
- Jeong, K.-M., and F. Kaufman, Kinetics of the reaction of hydroxyl radical with methane and with nine Cl- and F-substituted methanes. I. Experimental results, comparisons, and applications, *J. Phys. Chem.*, 86, 1808-1815, 1982.
- Kowalczyk, J., A. Jowko, and M. Symanowicz, Kinetics of radical reactions in freons, *J. Radioanal. Nucl. Chem.*, 232, 75-78, 1998.
- Nip, W. S., D. L. Singleton, R. Overend, and G. Paraskevopoulos, Rates of OH radical reactions. 5. Reactions with CH₃F, CH₂F₂, CHF₃, CH₃CH₂F, and CH₃CHF₂ at 297 K, *J. Phys. Chem.*, 83, 2440-2443, 1979.
- Szilagyi, I., S. Dobe, and T. Berces, Rate constant for the reaction of the OH-radical with CH₂F₂, *React. Kinet. Catal. Lett.*, 70, 319-324, 2000.
- Schmoltner, A.-M., R. K. Talukdar, R. F. Warren, A. Mellouki, L. Goldfarb, T. Gierczak, S. A. McKeen, and A. R. Ravishankara, Rate coefficients for reactions of several hydrofluorocarbons with OH and O(¹D) their atmospheric lifetimes, *J. Phys. Chem.*, *97*, 8976-8982, 1993.
- Talukdar, R., A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, Atmospheric fate of CF₂H₂, CH₃CF₃, CHF₂CF₃, and CH₃CFCl₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₃CFCl₂, *J. Phys. Chem.*, *95*, 5815-5821, 1991.

21. CHF₂CF₃ (HFC-125)

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 0.60 \times 10^{-12} \text{ exp}(-1700/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

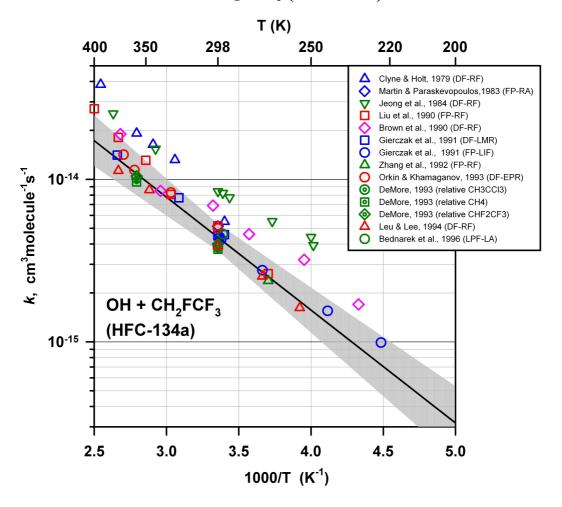
 $k(298 \text{ K}) = 2.0 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

f(298 K) = 1.1g = 100

A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g were revised from JPL10-6.

References


Brown, A. C., C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Laboratory studies of some halogenated ethanes and ethers: Measurements of rates of reaction with OH and of infrared absorption cross-sections, *Atmos. Environ.*, 24A, 2499-2511, 1990.

Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.

DeMore, W. B., Rate constants for the reactions of OH with HFC-134a (CF₃CH₂F) and HFC-134 (CHF₂CHF₂), *Geophys. Res. Lett.*, 20, 1359-1362, 1993.

- Martin, J.-P., and G. Paraskevopoulos, A kinetic study of the reactions of OH radicals with fluoroethanes. Estimates of C-H bond strengths in fluoroalkanes, *Can. J. Chem.*, *61*, 861-865, 1983.
- Talukdar, R., A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, Atmospheric fate of CF₂H₂, CH₃CF₃, CHF₂CF₃, and CH₃CFCl₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₃CFCl₂, *J. Phys. Chem.*, *95*, 5815-5821, 1991.
- Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury, Atmospheric chemistry of CF₃CF₂H and CF₃CF₂CF₂CF₂H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids, *Chem. Phys. Lett.*, 473, 251-256, 2009.

22. CH₂FCF₃ (HFC-134a)

Recommended Rate Coefficient

Recommended Uncertainty Factors

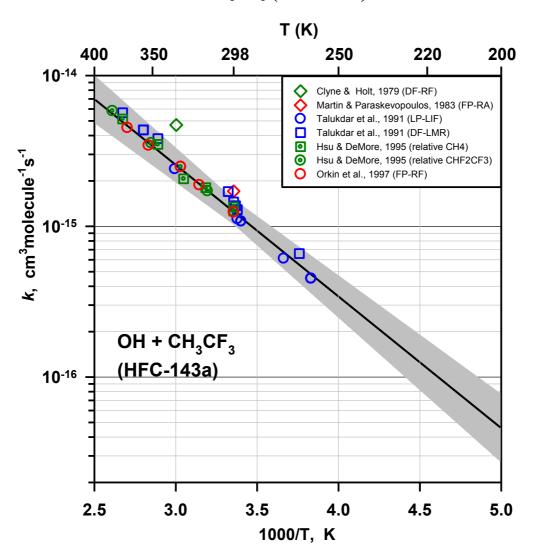
$$k(T) = 0.95 \times 10^{-12} \exp(-1600/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.1$
 $k(298 \text{ K}) = 4.4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 100$

E/R is an average of E/R (T < 400 K) from Liu *et al.* (1990), Gierczak *et al.* (1991) (2 studies), Orkin and Khamaganov (1993), Leu and Lee (1994), and DeMore (1993) (3 studies were averaged to give a single E/R).

f(298 K) is unchanged from JPL10-6;¹

g was revised from JPL10-6.1

References


Bednarek, G., M. Breil, A. Hoffman, J. P. Kohlman, V. Mors, and R. Zellner, Rate and mechanism of the atmospheric degradation of 1,1,1,2-tetrafluoroethane (HFC-134a), *Ber. Bunsenges. Phys. Chem.*, 100, 528-539, 1996.

Brown, A. C., C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Laboratory studies of some halogenated ethanes and ethers: Measurements of rates of reaction with OH and of infrared absorption cross-sections, *Atmos. Environ.*, 24A, 2499-2511, 1990.

Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.

- DeMore, W. B., Rate constants for the reactions of OH with HFC-134a (CF₃CH₂F) and HFC-134 (CHF₂CHF₂), *Geophys. Res. Lett.*, 20, 1359-1362, 1993.
- Gierczak, T., R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy, and A. R. Ravishankara, Atmospheric fate of hydrofluoroethanes and hydrofluoroethanes: 1. Rate coefficients for reactions with OH, *J. Geophys. Res.*, *96*, 5001-5011, 1991.
- Jeong, K. M., K. J. Hsu, J. B. Jeffries, and F. Kaufman, Kinetics of the reactions of OH with C₂H₆, CH₃CCl₃, CH₂ClCHCl₂, CH₂ClCClF₂, and CH₂FCF₃, *J. Phys. Chem.*, 88, 1222-1226, 1984.
- Leu, G.-H., and Y.-P. Lee, Temperature dependence of the rate constant of the reaction OH + CF₃CH₂F over the range 255-424 K, *J. Chin. Chem. Soc.*, 41, 645-649, 1994.
- Liu, R., R. E. Huie, and M. J. Kurylo, Rate constants for the reactions of the OH radical with some hydrochlorofluorocarbons over the temperature range 270-400 K, *J. Phys. Chem.*, *94*, 3247-3249, 1990.
- Martin, J.-P., and G. Paraskevopoulos, A kinetic study of the reactions of OH radicals with fluoroethanes. Estimates of C-H bond strengths in fluoroalkanes, *Can. J. Chem.*, *61*, 861-865, 1983.
- Orkin, V. L., and V. G. Khamaganov, Determination of rate constants for reactions of some hydrohaloalkanes with OH radicals and their atmospheric lifetimes, *J. Atmos. Chem.*, 16 (2), 157-167, doi: 10.1007/BF00702785, 1993.
- Zhang, Z., R. E. Huie, and M. J. Kurylo, Rate constants for the reactions of OH with CH₃CFCl₂ (HCFC-141b), CH₃CF₂Cl (HCFC-142b), and CH₂FCF₃ (HFC-134a), *J. Phys. Chem.*, *96*, 1533-1535, 1992.

23. CH₃CF₃ (HFC-143a)

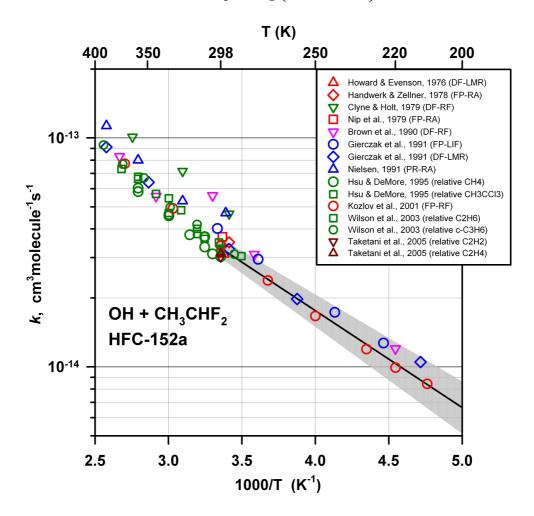
Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 1.06 \times 10^{-12} \exp(-2010/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.1$
 $k(298 \text{ K}) = 1.25 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 100$

Recommended k(298 K) is an average of room temperature data from Talukdar *et al.* (1991), (LP-LIF), Hsu and DeMore (1995) (2 studies), and Orkin *et al.* (1996). The Talukdar *et al.* (DF-LMR) data appear to be systematically high.

Recommended E/R is an average of values from Talukdar *et al.* (2 values), Hsu and DeMore (2 values), and Orkin *et al.*


f(298 K) and g are unchanged from JPL10-6.

References

Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.

- Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.
- Martin, J.-P., and G. Paraskevopoulos, A kinetic study of the reactions of OH radicals with fluoroethanes. Estimates of C-H bond strengths in fluoroalkanes, *Can. J. Chem.*, *61*, 861-865, 1983.
- Orkin, V. L., R. E. Huie, and M. J. Kurylo, Atmospheric Lifetimes of HFC-143a and HFC-245fa, *J. Phys. Chem.*, 100, 8907-8912, 1996.
- Talukdar, R., A. Mellouki, T. Gierczak, J. B. Burkholder, S. A. McKeen, and A. R. Ravishankara, Atmospheric fate of CF₂H₂, CH₃CF₃, CHF₂CF₃, and CH₃CFCl₂: Rate coefficients for reactions with OH and UV absorption cross sections of CH₃CFCl₂, *J. Phys. Chem.*, *95*, 5815-5821, 1991.

24. CH₃CHF₂ (HFC-152a)

Recommended Rate Coefficient

Recommended Uncertainty Factors

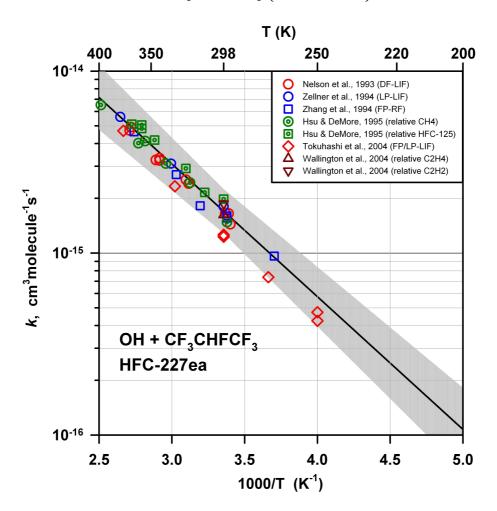
$$k(T) = 0.87 \times 10^{-12} \exp(-975/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $f(298 \text{ K}) = 1.05$
 $k(298 \text{ K}) = 3.3 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $g = 50$

A and E/R recommendations are unchanged from JPL10-6.

f(298 K) was revised from JPL10-6;¹

g is unchanged from JPL10-6.1

References


Brown, A. C., C. E. Canosa-Mas, A. D. Parr, and R. P. Wayne, Laboratory studies of some halogenated ethanes and ethers: Measurements of rates of reaction with OH and of infrared absorption cross-sections, *Atmos. Environ.*, 24A, 2499-2511, 1990.

Clyne, M. A. A., and P. M. Holt, Reaction kinetics involving ground $X^2\Pi$ and excited $A^2\Sigma^+$ hydroxyl radicals. Part 2. Rate constants for reactions of OH $X^2\Pi$ with halogenomethanes and halogenoethanes, *J. Chem. Soc. Faraday Trans.*, 2, 75, 582-591, 1979.

Gierczak, T., R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy, and A. R. Ravishankara, Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes: 1. Rate coefficients for reactions with OH, *J. Geophys. Res.*, *96*, 5001-5011, 1991.

- Handwerk, V., and R. Zellner, Kinetics of the reactions of OH radicals with some halocarbons (CHClF₂, CH₂ClF, CH₂ClCF₃, CH₃CClF₂, CH₃CHF₂) in the temperature range 260-370 K, *Ber. Bunsenges. Phys. Chem.*, 82, 1161-1166, 1978.
- Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K, *J. Chem. Phys.*, *64*, 4303-4306, 1976.
- Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.
- Kozlov, S. N., V. L. Orkin, and M. J. Kurylo, An Investigation of the reactivity of OH with fluoroethanes: CH₃CH₂F (HFC-161), CH₂FCH₂F (HFC-152), and CH₃CHF₂ (HFC-152a), *J. Phys. Chem. A*, 107, 2239-2246, 2003.
- Nielsen, O. J., Rate constants for the gas-phase reactions of OH radicals with CH₃CHF₂ and CHCl₂CF₃ over the temperature range 295-388 K, *Chem. Phys. Lett.*, 187, 286-290, 1991.
- Nip, W. S., D. L. Singleton, R. Overend, and G. Paraskevopoulos, Rates of OH radical reactions. 5. Reactions with CH₃F, CH₂F₂, CHF₃, CH₃CH₂F, and CH₃CHF₂ at 297 K, *J. Phys. Chem.*, 83, 2440-2443, 1979.
- Taketani, F., T. Nakayama, K. Takahashi, Y. Matsumi, M. D. Hurley, T. J. Wallington, A. Toft, and M. P. Andersen, Atmospheric chemistry of CH₃CHF₂ (HFC-152a): Kinetics, mechanisms, and products of Cl atom- and OH radical-initiated oxidation in the presence and absence of NO_x, *J. Phys. Chem. A*, 109, 9061-9069, 2005.
- Wilson, E. W., A. M. Jacoby, S. J. Kukta, L. E. Gilbert, and W. B. DeMore, Rate constants for reaction of CH₂FCH₂F (HFC-152) and CH₃CHF₂ (HFC-152a) with hydroxyl radicals, *J. Phys. Chem. A*, 107, 9357-9361, 2003.

25. CF₃CHFCF₃ (HFC-227ea)

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 0.48 \times 10^{-12} \text{ exp}(-1680/\text{T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) = 1.7 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

$$f(298 \text{ K}) = 1.15$$

 $g = 75$

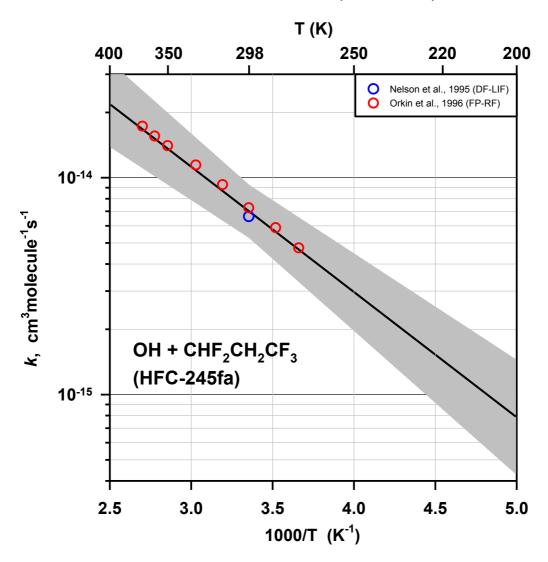
k(298 K) is an average of all room temperature results

E/R is from fit to Nelson *et al.* (1993), Zellner *et al.* (1994), Hsu and DeMore (1995) (2 studies), and Tokuhashi *et al.* (2004) (normalized to k(298 K) at temperatures < 400 K.

f(298 K) is unchanged from JPL10-6;¹

g was revised from JPL10-6.1

References


Hsu, K. J., and W. B. DeMore, Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements, *J. Phys. Chem.*, 99, 1235-1244, 1995.

Nelson, D. D., Jr., M. S. Zahniser, and C. E. Kolb, OH reaction kinetics and atmospheric lifetimes of CF₃CFHCF₃ and CF₃CH₂Br, *Geophys. Res. Lett.*, 20, 197-200, 1993.

Tokuhashi, K., L. Chen, S. Kutsuna, T. Uchimaru, M. Sugie, and A. Sekiya, Environmental assessment of CFC alternatives - Rate constants for the reactions of OH radicals with fluorinated compounds, *J. Fluor. Chem.*, *125*, 1801-1807, 2004.

- Wallington, T. J., M. D. Hurley, O. J. Nielsen, and M. P. S. Andersen, Atmospheric chemistry of CF₃CFHCF₂OCF₃ and CF₃CFHCF₂OCF₂H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials, *J. Phys. Chem. A*, *108*, 11333-11338, 2004.
- Zellner, R., G. Bednarek, A. Hoffmann, J. P. Kohlmann, V. Mors, and H. Saathoff, Rate and mechanism of the atmospheric degradation of 2 H-heptafluoropropane (HFC-227), *Ber. Bunsenges. Phys. Chem.*, 98, 141-146, 1994.
- Zhang, Z., S. Padmaja, R. D. Saini, R. E. Huie, and M. J. Kurylo, Reactions of hydroxyl radicals with several hydrofluorocarbons: The temperature dependencies of the rate constants for CHF₂CF₂CH₂F (HFC-245ca), CF₃CHFCHF₂ (HFC-236ea), CF₃CHFCF₃ (HFC-227ea), and CF₃CH₂CH₂CF₃ (HFC-356ffa), *J. Phys. Chem.*, *98*, 4312-4315, 1994.

26. CHF₂CH₂CF₃ (HFC-245fa)

Recommended Rate Coefficient

Recommended Uncertainty Factors

$$k(T) = 0.61 \times 10^{-12} \exp(-1330/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 $k(298 \text{ K}) = 7.0 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
 $g = 0.61 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

f(298 K) = 1.15g = 100

A and E/R recommendations are unchanged from JPL10-6.

f(298 K) and g were revised from JPL10-6.

References

Nelson, D. D., M. S. Zahniser, C. E. Kolb, and H. Magid, OH reaction kinetics and atmospheric lifetime estimates for several hydrofluorocarbons, *J. Phys. Chem.*, 99, 16301-16306, 1995.

Orkin, V. L., R. E. Huie, and M. J. Kurylo, Atmospheric lifetimes of HFC-143a and HFC-245fa, *J. Phys. Chem.*, 100, 8907-8912, 1996.

27. NF₃

Recommended Rate Coefficient

$$k(T) < 1 \times 10^{-11} \exp(-17500/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 3 \times 10^{-37} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Not evaluated in JPL10-6.1

Dillon *et al.* (2011) reported a room temperature rate-coefficient upper limit of 4×10^{-16} cm³ molecule⁻¹ s⁻¹ for this reaction. F atom abstraction from NF₃ by the OH radical is endothermic by ~42 kJ mol⁻¹ (Gurvich *et al.*, 1998; Karton *et al.*, 2009; Ruscic *et al.*, 2005). Equating the activation energy to this endothermicity and assuming a pre-exponential factor of 1×10^{-11} cm³ molecule⁻¹ s⁻¹ yields a lower upper-limit rate coefficient of

$$k(T) < 1 \times 10^{-11} \text{ exp(-5000/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 5 \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

A G3B3 quantum chemical method (Curtiss *et al.*, 2001) calculation yields a similar reaction endothermicity (43 kJ mol⁻¹) and an activation barrier of \sim 146 kJ mol⁻¹. Assuming a pre-exponential factor of 1 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ an even more restrictive upper-limit rate coefficient is obtained with this activation energy and provides the basis of the present recommendation

$$k(T) < 1 \times 10^{-11} \text{ exp(-17500/T) cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

 $k(298 \text{ K}) < 3 \times 10^{-37} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

- Curtiss, L. A., K. Raghavachari, P. C. Redfern, and J. A. Pople, Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation, *J. Chem. Phys.*, 106, 1063-1079, 1997.
- Dillon, T. J., L. Vereecken, A. Horowitz, V. Khamaganov, J. N. Crowley, and J. Lelieveld, Removal of the potent greenhouse gas NF₃ by reactions with the atmospheric oxidants O(¹D), OH and O₃, *Phys. Chem. Chem. Phys.*, 13, 18600-18608, 2011.
- Gurvich, L. V., I. V. Veyts, and C. B. Alcock, *Thermodynamic Properties of Individual Substances*, Fourth Edition, Hemisphere Pub. Co., New York, 1989.
- Karton, A., S. Parthiban, and J. M. L. Martin, Post-CCSD(T) *ab initio* thermochemistry of halogen oxides and related hydrides XOX, XOOX, HOX, XO_n, and HXO_n (X = F, Cl), and evaluation of DFT methods for these systems, *J. Phys. Chem. A*, 113, 4802-4816, 2009.
- Ruscic, B., J. E. Boggs, A. Burcat, A. G. Csaszar, J. Demaison, R. Janoschek, J. M. L. Martin, M. L. Morton, M. J. Rossi, J. F. Stanton, P. G. Szalay, P. R. Westmoreland, F. Zabel, and T. Berces, IUPAC critical evaluation of thermochemical properties of selected radicals. Part I, *J. Phys. Chem. Ref. Data*, *34*, 573-656, 2005.