Current special issues
Special journal issues are currently open for submissions for:
- The SPARC Reanalysis Intercomparison (S-RIP) activity has a special issue in Atmospheric Chemistry and Physics: www.atmos-chem-phys.net/special_issue829.html
- The joint SPARC/IGAC Chemistry-Climate Model Initiative (CCMI) has a joint special issue in Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Earth System Science Data, and Geoscientific Model Development: www.atmos-chem-phys.net/special_issue812.html.
- The WAVAS-II activity has a joint special issue in Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, and Earth System Science Data: www.atmos-chem-phys.net/special_issue830.html
- The TUNER activity has a special issue in Atmospheric Measurement Techniques: https://www.atmos-meas-tech.net/special_issue921.html
-
The SNAP & QBOi activities have a special issue in Copernicus journals (WCD/GMD inter-journal SI): Stratospheric impacts on climate variability and predictability in nudging experiments: https://wcd.copernicus.org/articles/special_issue1297.html
The SPARC/IO3C/IGACO-O3/NDACC (SI2N) initiative produced over 50 journal articles in a joint Atmospheric Chemistry and Physics/Atmospheric Measurement Techniques/Earth System Science Data special issue. The full list of articles can be found here.
Atmospheric Composition and the Asian Summer Monsoon (ACAM)
- Randel, W. J., Laura, L., and J. Bian, 2016: Workshop on dynamics, transport and chemistry of the UTLS Asian Monsoon. Advances in Atmospheric Sciences, 33(9), pp 1096–1098.
- Hitchcock, P., Butler, A., Charlton-Perez, A., Garfinkel, C.I., Stockdale, T., Anstey, J., et al., 2022: Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geoscientific Model Development, 15(13), 5073–5092. doi: 10.5194/gmd-15-5073-2022.
- Lawrence, Z.D., Abalos, M., Ayarzagüena, B., Barriopedro, D., Butler, A.H., Calvo, N., de la Cámara, A., Charlton-Perez, A., Domeisen, D.I., Dunn-Sigouin, E. and García-Serrano, J., 2022. Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems. Weather and Climate Dynamics Discussions, 2022, pp.1-37.
- Domeisen, D. et al. (2019): The role of the stratosphere in subseasonal to seasonal prediction Part I: Predictability of the stratosphere. Journal of Geophysical Research: Atmospheres, 124. DOI: 10.1029/2019JD030920.
- 2019). The role of the stratosphere in subseasonal to seasonal prediction Part II: Predictability arising from stratosphere ‐ troposphere coupling. Journal of Geophysical Research: Atmospheres, 124. DOI: 0.1029/2019JD030923. , , , , , , et al (
- Butler, A.H., et al., Sub-seasonal Predictability and the Stratosphere- Chapter 11, The Gap Between Weather and Climate Forecasting, p. 223-241, Elsevier, https://doi.org/10.1016/B978-0-12-811714-9.00011-5, 2019.
- Tripathi, O.P., et al., 2014: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q.J.R. Meteorol. Soc.. doi: 10.1002/qj.2432
Find full publication list at http://www.pa.op.dlr.de/CCMVal/CCMVal_publications.html
- Morgenstern, O. et al. (2017): Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, DOI: 10.5194/gmd-10-639-2017.
- Butchart, N., et al. (2011) Multimodel climate and variability of the stratosphere. Journal of Geophysical Research – Atmosphere 116, D05102, DOI: 10.1029/2010JD014995.
- Austin, J., et al. (2008) Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113, D11306
- Duncan, B.N., A. Gettelman, P. Hess, G. Myhre, and P. Young (eds.), 2016: Chemistry–Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD inter-journal SI). Special issue Atmos. Chem. Phys.
- Eyring V., et al. (2005) A strategy for process-oriented validation of coupled chemistry-climate models. Bull. Am. Meteorol. Soc., 86, 1117–1133
- Eyring, V., et al. (2006) Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327
- Eyring, V., et al. (2007) Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332
- Gettelman, A., et al. (2009) The Tropical Tropopause Layer 1960–2100. Atmos. Chem. Phys., 9, 1621-1637
- Son, S.-W., et al. (2008) The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet. Science, 320, DOI: 10.1126/science.1155939
- Son, S.-W., et al. (2009) Future tropopause trends as simulated by stratosphere-resolving chemistry-climate models. J. Clim., 22, 429-455
- Tourpali, K., et al. (2009) Clear sky UV simulations in the 21st century based on Ozone and Temperature Projections from Chemistry-Climate Models. Atmos. Chem. Phys., 9, 1165-1172
- Waugh, D. W. and V. Eyring (2008) Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8, 5699-5713
- Gerber, E. P. and E. Manzini, 2016: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system. Geosci. Model Dev., 9, 3413-3425
- Kidston J., et al., 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433-450
- Barnes, E.A., N.W. Barnes and L.M. Polvani, 2014: Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Climate, 27, 852-867.
- Gerber, E. P. and S.-W. Son, 2014: Quantifying the Summertime Response of the Austral Jet Stream and Hadley Cell to Stratospheric Ozone and Greenhouse Gases. J. Climate, 27, 5538-5559, doi: 10.1175/JCLI-D-13-00539.1
- Lott, F. et al., 2014: Kelvin and Rossby-gravity wave packets in the lower stratosphere of some high-top CMIP5 models. JGR Atmos., 119, 2156–2173, doi: 10.1002/2013JD020797
- Manzini, E. et al., 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. JGR Atmos., 119, doi: 10.1002/2013JD021403
- Neely, R.R., et al., 2014: Biases in Southern Hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophys. Res. Lett., 41, doi:10.1002/2014GL061627
- Scaife, A.A., et al., 2014: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on sea- sonal to decadal timescales. Geophys. Res. Lett., 41, 1752–1758, doi:10.1002/ 2013GL059160.
- Seviour W.J.M., et al., 2014: Skillful seasonal prediction of the Southern Annular Mode and Antarctic ozone. J. Clim., 27, 7462-7474, DOI: 10.1175/JCLI-D-14-00264.1.
- Shaw, T.A., J. Perlwitz, and O. Weiner, 2014: Troposphere-stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res., 10.1002/2013JD021191
- Simpson, I.R., T.A. Shaw, and R. Seager, 2014: A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming. J. Atmos. Sci., 71, 2489-2514, DOI: 10.1175/JAS-D-13-0325.1
- Kawatani, Y., and K. Hamilton (2013) Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 497, doi:10.1038/nature12140 See alsocorrigendum.
- Hardiman, S.C., N. Butchart, and N. Calvo (2013) The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Q.J.R. Meteorol. Soc., DOI: 10.1002/qj.2258
- Charlton-Perez, A.J., et al. (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos., 118, 2494–2505, doi:10.1002/jgrd.50125
- Reichler, T., J. Kim, E. Manzini, and J. Kröger (2012) A stratospheric connection to Atlantic climate variability. Nature Geoscience, Letters, 5, 783-787. DOI 10.1038/ngeo1586.http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1586.html
- Gerber, E.P., et al. (2012) Assessing and Understanding the Impact of Stratospheric Dynamics and Variability on the Earth System. Bulletin of the American Meteorological Society 93: 845-859.
- Tegtmeier, S., et al. (2013) The SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounder. J. Geopyhs. Res., DOI: 10.1002/2013JD019877.
- Hegglin, M.I., et al. (2013) SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders. J. Geopyhs. Res., DOI: 10.1002/jgrd.50752.
- de la Cámara, A. and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, doi:10.1002/2015GL063298.
- Plougonven, R., A. Hertzog, and M. J. Alexander, 2015: Case studies of nonorographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res., 120, 1278-1299.
- Sato, K. and M. Nomoto, 2015: Gravity wave-induced anomalous potential vorticity gradient generating planetary waves in the winter mesosphere. J. Atmos. Sci., 72, 3609-3624. doi: dx.doi.org/10.1175/JAS-D-15‐0046.1
- Scheffler, G., and M. Pulido, 2015: Compensation between resolved and unresolved wave drag in the stratospheric final warnings of the Southern Hemisphere. J. Atmos. Sci., 72, doi: dx.doi.org/10.1175/JAS‐D-14‐0270.1
- Geller, M.A., et al. (2013) Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models. Journal of Climate (ahead of print)
- Alexander, M.J., et al. (2010) Recent Developments on Gravity Wave Effects in Climate Models, and the Global Distribution of Gravity Wave Momentum Flux from Observations and Models. Q. J. Roy. Meteorol. Soc., 136, 1103-1124.
- Snels, M., et al.: Comparison of Antarctic polar stratospheric cloud observations by ground-based and spaceborne lidars and relevance for Chemistry Climate Models, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-589, in review, 2018.
- Tritscher, I., et al.: Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-337, in review, 2018.
- Höpfner, M., et al.: The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles, Atmos. Meas. Tech., 11, 5901-5923, https://doi.org/10.5194/amt-11-5901-2018, 2018.
- Pitts, M. C., Poole, L. R., and Gonzalez, R.: Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017, Atmos. Chem. Phys., 18, 10881-10913, https://doi.org/10.5194/acp-18-10881-2018, 2018.
- Grooß, J.-U., et al.: On the discrepancy of HCl processing in the core of the wintertime polar vortices, Atmos. Chem. Phys., 18, 8647-8666, https://doi.org/10.5194/acp-18-8647-2018, 2018.
- Spang, R., et al.: A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations, Atmos. Chem. Phys., 18, 5089-5113, https://doi.org/10.5194/acp-18-5089-2018, 2018.
- Spang, R., et al.: A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra, Atmos. Meas. Tech., 9, 3619-3639, https://doi.org/10.5194/amt-9-3619-2016, 2016.
- Lambert, A., Santee, M. L., and Livesey, N. J.: Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS, Atmos. Chem. Phys., 16, 15219-15246, https://doi.org/10.5194/acp-16-15219-2016, 2016.
- Matthes, K., et al., 2017: Solar Forcing for CMIP6 (v3.2). Geosci. Model Dev., 10, doi:10.5194/gmd-10-2247-2017.
- Funke, B., et al., 2017: HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009, Atmos. Chem. Phys., 17, 3573-3604, doi:10.5194/acp-17-3573-2017.
- Gillett, N.P., et al., 2016: Detection and Attribution Model Intercomparison Project (DAMIP). Geosci. Model Dev., doi:10.5194/gmd-2016-74.
- Kodera, K., Thiéblemont, R., Yukimoto, S., and Matthes, K., 2016: How can we understand the global distribution of the solar cycle signal on the Earth’s surface? Atmos. Chem. Phys. 16, 12925-12944, doi:10.5194/acp-16-12925-2016.
- Misios, S., et al., 2015: Solar Signals in CMIP-5 Simulations: Effects Atmosphere-Ocean Coupling, Q. J. Roy. Met. Soc., 142, doi:10.1002/qj.2695.
- Hood, L., et al., 2015: Solar Signals in CMIP-5 Simulations: The Ozone Response. Q. J. Roy. Met. Soc., DOI 10.1002/qj.2553.
- Mitchell, D., et al., 2015: Solar Signals in CMIP-5 Simulations: The Stratospheric Pathway. Q. J. Roy. Met. Soc, doi:10.1002/qj.2530.
- Thiéblemont, R., K. Matthes, N. Omrani, K. Kodera, and F. Hansen, 2015: Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Comm., doi: 10.1038/ncomms9268.
- Ermolli, I., et al. (2012) Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. Discuss., 12, 24557-24642, doi:10.5194/acpd-12-24557-2012
- Funke, B., et al. (2011) Composition changes after the “Halloween” solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys., Vol. 11(3), 9089-9139.
- Gray, L.J., et al. (2010) Solar Influences on Climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.
- Manzini, E., and K. Matthes et al. (2010) Natural Variability of Stratospheric Ozone, Chapter 8 in SPARC CCMVal, SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, V. Eyring, T. G. Shepherd, D. W. Waugh (Eds.) SPARC Report No. 5, WCRP-X, WMO/TD-No. X, 2010.
- Austin, J., et al. (2008) Coupled chemistry climate simulations of the solar cycle in temperature and ozone. Journal of Geophysical Research 113, D11306, doi: 10.1029/2007JD009391.
Find more science articles at http://sparcsolaris.gfz-potsdam.de/publications.php.
- Butchart, N. et al., 2018. Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geoscientific Model Development, 11, 1009-1032, 10.5194/gmd-11-1009-2018.
- Rajendran K., I. M. Moroz, S. M. Osprey, and P. L. Read, 2018: Descent rate models of the synchronization of the Quasi-Biennial Oscillation by the annual cycle in tropical upwelling. J. Atmos. Sci., 10.1175/JAS-D-17-0267.1
- Watanabe S., et al., 2018: First Successful Hindcasts of the 2016 Disruption of the Stratospheric Quasi-biennial Oscillation. Geophys. Res. Lett., 45(3), 10.1002/2017GL076406.
- Osprey, S., Geller M., and Yoden S., 2018: The stratosphere and its role in tropical teleconnections. Eos. 2018 99, 10.1029/2018EO097387.
- Schenzinger V., Osprey S., Gray L., and Butchart N.: Defining metrics of the Quasi-Biennial Oscillation in global climate models. Geosci Model Dev., 8 Jun 2017, 10(6):2157-68, DOI: 10.5194/gmd-10-2157-2017
- Osprey, S.M., et al., 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 08 Sep 2016, DOI: 10.1126/science.aah4156
- Rajendran K., I.M. Moroz, P.L. Read and S.M. Osprey, 2016: Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Q. J. R. Meteorol. Soc., DOI: 10.1002/qj.2714
- Hamilton, K., S. Osprey, and N. Butchart, 2015: Modeling the stratosphere’s “heartbeat,” EOS, 96, doi:10.1029/2015EO032301.
- Baldwin, M.P., et al. (2001) The quasi-biennial oscillation. Reviews of Geophysics 39(2), pp. 179-229.
- Kravitz, B., et al. (2011) The geo-engineering model intercomparison project (GeoMIP). Atmospheric Science Letters 12, 162-167, doi:10.1002/asl.316.
- Robock, A., B. Kravitz, and O. Boucher (2011) Standardizing experiments in geoengineering: GeoMIP stratospheric aerosol geoengineering workshop. Eos 92(23), 197-198, doi:10.1029/2011EO230008.
- Kravitz, B., A. Robock, O. Boucher, H. Schmidt, and K. E. Taylor (2011) Specifications for GeoMIP experiments G1 through G4. (Frozen: Version 1.0)
- Fujiwara, M. et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys. 17, 1417-1452, doi: 10.5194/acp-17-1417-2017.
- Long, C. S. et al., 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys. 17, 14593-14629, doi: 10.5194/acp-17-14593-2017.
- Davis, S. M. et al., 2017: Assessment of upper tropospheric and stratospheric water vapour and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys. 17, 12743-12778, doi: 10.5194/acp-17-12743-2017.
- Thomason, L. W., et al. (2018). “A global space-based stratospheric aerosol climatology: 1979–2016.” Earth System Science Data 10(1): 469-492. https://doi.org/10.5194/essd-10-469-2018
- Timmreck, C., et al. (2018) “The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design.” Geosci. Model Dev., 11, 2581-2608, https://doi.org/10.5194/gmd-11-2581-2018”. https://doi.org/10.5194/gmd-11-2581-2018
- Kremser, S. et al. (2016): Stratospheric aerosol—Observations, processes, and impact on climate, Rev. Geophys., 54, 278– 335, DOI: 10.1002/2015RG000511
- Deshler, T., R. Anderson-Sprecher, H. Jäger, et al., Trends in the non-volcanic component of stratospheric aerosol over the period 1971–2004, J. Geophys. Res., 111, D01201 (2006)
Temperature changes (previous temperature trends activity)
- Maycock, A. C., et al. (2018): Revisiting the mystery of recent stratospheric temperature trends. Geophysical Research Letters, 45, 9919– 9933. DOI: 10.1029/2018GL078035.
- Ding, Q., & Fu, Q. (2017). A warming tropical central Pacific dries the lower stratosphere. Climate Dynamics. https://doi.org/10.1007/s00382-017-3774-y
- Funatsu, B. M., Claud, C., Keckhut, P., Hauchecorne, A., & Leblanc, T. (2016). Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. Journal of Geophysical Research: Atmospheres, 2015JD024305. https://doi.org/10.1002/2015JD024305
- Garfinkel, C.I., Son, S.-W., Song, K., Aquila, V., & Oman, L. D. (2017). Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophysical Research Letters, 44(1), 2016GL072035. https://doi.org/10.1002/2016GL072035
- Hauchecorne, A. et al. (2018). A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations. Atmospheric Measurement Techniques Discussion,https://doi.org/10.5194/amt-2018-241
- Ho, S.-P., Peng, L., & Vömel, H. (2017). Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014. Atmospheric Chemistry and Physics, 17(7), 4493–4511. https://doi.org/10.5194/acp-17-4493-2017
- Ivy, D. J., Solomon, S., & Rieder, H. E. (2015). Radiative and Dynamical Influences on Polar Stratospheric Temperature Trends. Journal of Climate. https://doi.org/10.1175/JCLI-D-15-0503.1
- Ivy, D. J., Solomon, S., Calvo, N., & Thompson, D. W. J. (2017). Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environmental Research Letters, 12(2), 024004
- Khaykin, S. M., Funatsu, B. M., Hauchecorne, A., Godin-Beekmann, S., Claud, C., Keckhut, P., et al. (2017). Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations. Geophysical Research Letters, 44(14), 2017GL074353. https://doi.org/10.1002/2017GL074353
- Li, J., Thompson, D. W. J., Barnes, E. A., & Solomon, S. (2017). Quantifying the Lead Time Required for a Linear Trend to Emerge from Natural Climate Variability. Journal of Climate. https://doi.org/10.1175/JCLI-D-16-0280.1
- Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., & Wright, C. J. (2017). Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17(23), 14593–14629. https://doi.org/10.5194/acp-17-14593-2017
- Maycock, A. C. (2016). The contribution of ozone to future stratospheric temperature trends. Geophysical Research Letters, 2016GL068511. https://doi.org/10.1002/2016GL068511
- Maycock, A. C., & Hitchcock, P. (2015). Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophysical Research Letters, 2015GL066754. https://doi.org/10.1002/2015GL066754
- Maycock, A. C., et al. (2018). Revisiting the mystery of recent stratospheric temperature trends. Geophysical Research Letters. https://doi.org/10.1029/2018GL078035 (Frontier article).
- McLandress, C., et al. (2015). A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU. Atmospheric Chemistry and Physics, 15(16), 9271–9284. https://doi.org/10.5194/acp-15-9271-2015
- Mears, C. A., & Wentz, F. J. (2017). A Satellite-Derived Lower-Tropospheric Atmospheric Temperature Dataset Using an Optimized Adjustment for Diurnal Effects. Journal of Climate, 30(19), 7695–7718. https://doi.org/10.1175/JCLI-D-16-0768.1
- Ming, A., Maycock, A. C., Hitchcock, P., & Haynes, P. (2017). The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer. Atmos. Chem. Phys., 17(9), 5677–5701. https://doi.org/10.5194/acp-17-5677-2017
- Nash, J., & Saunders, R. (2013). A review of Stratospheric Sounding Unit radiance observations in support of climate trends investigations and reanalysis (Met Office Technical Report No. 586) (pp. 58).
- Nash, J., & Saunders, R. (2015). A review of Stratospheric Sounding Unit radiance observations for climate trends and reanalyses. Quarterly Journal of the Royal Meteorological Society, 141(691), 2103–2113. https://doi.org/10.1002/qj.2505
- Polvani, L. M., Abalos, M.; Garcia, R., Kinnison, D. & Randel, W. J. (2018). Significant weakening of Brewer-Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol. Geophys. Res. Lett., 45, 401–409. https://doi.org/10.1002/2017GL075345
- Polvani, L.M., et al. (2018). The impact of ozone-depleting substances on tropical upwelling, as revealed by the absence of lower-stratospheric cooling since the late 1990s. J. Climate, 30, 2523–2534. https://doi.org/10.1175/JCLI-D-16-0532
- Randel, W.J., et al. (2016). Stratospheric temperature trends over 1979-2015 derived from combined SSU, MLS and SABER satellite observations. Journal of Climate. https://doi.org/10.1175/JCLI-D-15-0629.1
- Randel, W.J., et al. (2017). Troposphere-Stratosphere Temperature Trends Derived From Satellite Data Compared With Ensemble Simulations From WACCM. Journal of Geophysical Research: Atmospheres, 122(18), 2017JD027158. https://doi.org/10.1002/2017JD027158
- Randel, W. J. (2018). The seasonal fingerprint of climate change. Science, 361, 227–228. doi:10.1126/science.aat9097
- Santer, B.D., Solomon, S., Pallotta, G., Mears, C., Po-Chedley, S., Fu, Q., et al. (2016). Comparing tropospheric warming in climate models and satellite data. Journal of Climate. https://doi.org/10.1175/JCLI-D-16-0333.1
- Santer, B.D., Fyfe, J.C., Pallotta, G., Flato, G.M., Meehl, G.A., England, M.H., et al. (2017). Causes of differences in model and satellite tropospheric warming rates. Nature Geosci, 10(7), 478–485
- Santer, B. D., Solomon, S., Wentz, F. J., Fu, Q., Po-Chedley, S., Mears, C., et al. (2017). Tropospheric Warming Over The Past Two Decades. Scientific Reports, 7(1), 2336. https://doi.org/10.1038/s41598-017-02520-7
- Santer, B.D., et al. (2018). Human influence on the seasonal cycle of tropospheric temperature. Science, 361(6399), eaas8806. https://doi.org/10.1126/science.aas8806
- Scherllin-Pirscher, B., Randel, W. J., & Kim, J. (2017). Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements. Atmospheric Chemistry and Physics, 17(2), 793–806. https://doi.org/10.5194/acp-17-793-2017
- Schmidt, T., et al. (2016). UTLS temperature validation of MPI-ESM decadal hindcast experiments with GPS radio occultations. Meteorologische Zeitschrift, 25(6), 673–683. https://doi.org/10.1127/metz/2015/0601
- Seidel, D.J., Li, J., Mears, C., Moradi, I., Nash, J., Randel, W.J., et al. (2016). Stratospheric temperature changes during the satellite era. Journal of Geophysical Research: Atmospheres, 121(2), 2015JD024039. https://doi.org/10.1002/2015JD024039
- Shultz, D. (2018), Satellite observations validate stratosphere temperature models, Eos, https://doi.org/10.1029/2018EO109113, published on 21 November 2018.
- Steiner, A. K., Lackner, B. C., & Ringer, M. A. (2018). Tropical convection regimes in climate models: evaluation with satellite observations. Atmospheric Chemistry and Physics, 18, 4657–4672, https://doi.org/10.5194/acp-18-4657-2018
- Thompson, D.W.J., Seidel, D.J., Randel, W.J., Zou, C.-Z., Butler, A.H., Mears, C., et al. (2012). The mystery of recent stratospheric temperature trends. Nature, 491(7426), 692–697. https://doi.org/10.1038/nature11579
- Wilhelmsen, H., Ladstädter, F., Scherllin-Pirscher, B., & Steiner, A. K. (2018). Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements. Atmos. Meas. Tech., 11(3), 1333–1346. https://doi.org/10.5194/amt-11-1333-2018
- Zou, C.-Z., Qian, H., Wang, W., Wang, L., & Long, C. (2014). Recalibration and merging of SSU observations for stratospheric temperature trend studies. Journal of Geophysical Research: Atmospheres, 119(23), 2014JD021603. https://doi.org/10.1002/2014JD021603
- Zou, C.-Z., & Qian, H. (2016). Stratospheric Temperature Climate Data Record from Merged SSU and AMSU-A Observations. Journal of Atmospheric and Oceanic Technology, 33(9), 1967–1984. https://doi.org/10.1175/JTECH-D-16-0018.1
- Zou, C.-Z., Goldberg, M. D., & Hao, X. (2018). New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection. Science Advances, 4(10), eaau0049. https://doi.org/10.1126/sciadv.aau0049
- Keckhut, P., et al. (2011) An evaluation of uncertainties in monitoring middle atmosphere temperatures with the lidar network in support of space observation. Journal of Atmospheric and Solar-terrestrial Physics, 73(5-6), 627-642, doi: 10.1016/j.jastp.2011.01.003
- Seidel, D.J., N.P. Gillet, J.R. Lanzante, K.P. Shine, and P.W. Thorne (2011) Stratospheric temperature trends: our evolving understanding. Climate Change 2(4), pp. 592-616
- Randel, W.J., et al. (2009) An update of observed stratospheric temperature trends. Journal of Geophysical Research 114, D02107, DOI: 10.1029/2008JD010421
- Austin, J., et al. (2009) Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past. Geophysical Research Letters 36, L13809, DOI: 10.1029/2009GL038462
- Shine, K.P., J. Barnett John, and W.J. Randel (2008) Temperature trends derived from Stratospheric Sounding Unit radiances: The effect of increasing CO2 on the weighting function. GEOPHYSICAL RESEARCH LETTERS 35(2), DOI: 10.1029/2007GL032218
- Ramaswamy, V., et al. (2001) Stratospheric temperature trends: Observations and model simulations. REVIEWS OF GEOPHYSICS 39 (1), pp. 71-122, DOI: 10.1029/1999RG000065
- Shine, K.P., et al. (2003) A comparison of model-simulated trends in stratospheric temperatures. Quarterly Journal of the Royal Meteorological Society (Q.J.R. Meteorol. Soc.), 129 (590), pp. 1565-1588.
- Rosenlof, K.H., S.J. Oltmans, D. Kley, J.M. Russell III, E.-W. Chiou, W.P. Chu, D.G. Johnson, K.K. Kelly, H.A. Michelsen, G.E. Nedoluha, E.E. Remsberg, G.C. Toon, M.P. McCormick (2001)Stratospheric water vapour increases over the past half-century. Geophysical Research Letters 28(7), pp. 1195-1198, DOI: 10.1029/2000GL012502.
- Butchart, N., et al. (2006) Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dynamics 27, pp. 727-741.
- Matthes, K., et al. (2003) GRIPS solar experiments intercomparison project: initial results. Meteorology and Geosphysics, 54: 71-90.
- Horinouchi, T., et al. (2003) Tropical cumulus convection and upward-propagating waves in middle-atmospheric GCMs. Journal of the Atmospheric Sciences 60(22), pp. 2765-2782.
- Pawson, S., et al. (2000) The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific Issues and Initial Results. Bulletin of the American Meteorological Society 81(4), pp. 781-796.
- Koshyk, J.N., et al. (1999) Kinetic energy spectrum of horizontal motions in middle-atmopshere models. Journal of Geophysical Research – Atmosphere 104(D22), pp. 27177-27190.
- Randel, W., et al. (2004) The SPARC Intercomparison of Middle Atmosphere Climatologies. Journal of Climate 17, p. 987-1003.
- Matsumi, Y., et al. (2002) Quantum yields for production of O((1)D) in the ultraviolet photolysis of ozone: Recommendation based on evaluation of laboratory data. Journal of Geophysical Research 107(0), DOI 10.1029/2001JD00510.
- Love, P. T. and M. A. Geller (2012) Research using high (and higher) resolution radiosonde data. EOS 93: 35, 28 August 2012, pp. 337-344
- Birner, T. (2006) Fine-scale structure of the extratropical tropopause region. Journal of Geophysical Research 111, D04104, DOI 10.1029/2005JD006301